Lecture_Template

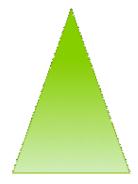
30 Mart 2020 Pazartesi

4.6 Applied Optimization

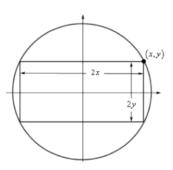
Solving Applied Optimization Problems

- **1.** *Read the problem.* Read the problem until you understand it. What is given? What is the unknown quantity to be optimized?
- 2. Draw a picture. Label any part that may be important to the problem.
- **3.** *Introduce variables.* List every relation in the picture and in the problem as an equation or algebraic expression, and identify the unknown variable.
- **4.** Write an equation for the unknown quantity. If you can, express the unknown as a function of a single variable or in two equations in two unknowns. This may require considerable manipulation.
- **5.** *Test the critical points and endpoints in the domain of the unknown.* Use what you know about the shape of the function's graph. Use the first and second derivatives to identify and classify the function's critical points.

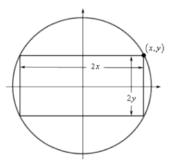
Ex: Find the maximum area of an Isosceles triangle which has perimeter 1C.



EX: Determine the area of the largest rectangle that can be inscribed in a circle of radius 4.



Ex: Determine the area of the largest rectangle that can be inscribed in a circle of racius 4.

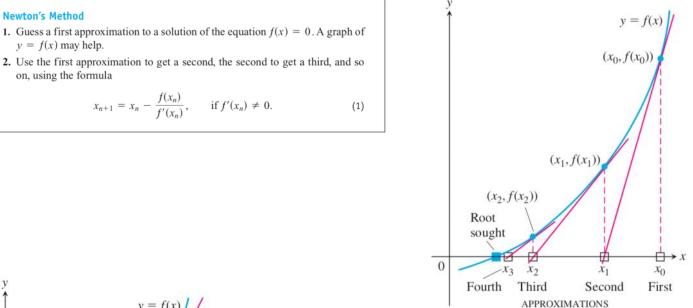


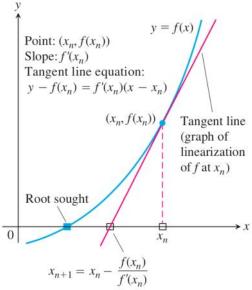
 $\underbrace{\mathsf{E} \times :}_{\text{the tangent line to the curve } y = \ln x \text{ at } (t, \ln t).$ Find the maximum value of A(t).

4.6 Newton's Method

Can you find roots of
$$|0x^2 - 7x^2 - 3x + 1 = 5in x$$
?

You can not in general, but you can find it approximately.

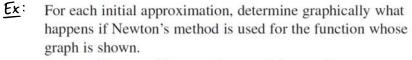


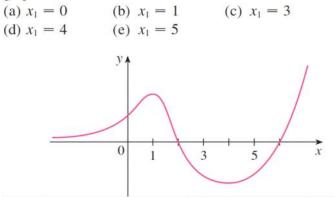


Ex: Starting with x==1 estimate the solution of x2+x-1=0

Ex: Use Newton's method to find \$2 correct to four desimply.

Ex: Use Newton's method to find an approximate solution of In (x) = 9 - x. Start with x₀ = 10 and find x₂.

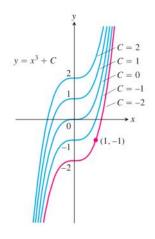




4.8 Antiderivatives

DEFINITION A function F is an **antiderivative** of f on an interval I if F'(x) = f(x) for all x in I.

Ex: What is antiderivative of 322?



THEOREM 8 If F is an antiderivative of f on an interval I, then the most general antiderivative of f on I is

$$F(x) + C$$

where C is an arbitrary constant.

 \underline{Ex} : $f(n) = \cos 2x$

$$\underline{E\times}: f(x) = 3^{x} + \frac{1}{\sqrt[3]{x}}$$

$$\underbrace{E_{x}}_{x} f(x) = -\sec^2 \frac{3x}{2}$$

Ex: Find the function with derivative $f(x) = e^{2x}$ whose graph passes through the point $(0, \frac{3}{6})$.

TABLE 4.2 Antiderivative formulas, k a nonzero constant

Function	General antiderivative	Function	General antiderivative
1. <i>x</i> ^{<i>n</i>}	$\frac{1}{n+1}x^{n+1} + C, n \neq -1$	8. e ^{kx}	$\frac{1}{k}e^{kx} + C$
$2. \sin kx$	$-\frac{1}{k}\cos kx + C$	9. $\frac{1}{x}$	$\ln x + C, x \neq 0$
3. cos <i>kx</i>	$\frac{1}{k}\sin kx + C$	10. $\frac{1}{\sqrt{1-k^2x^2}}$	$\frac{1}{k}\sin^{-1}kx + C$
4. $\sec^2 kx$	$\frac{1}{k} \tan kx + C$	11. $\frac{1}{1+k^2x^2}$	$\frac{1}{k} \tan^{-1} kx + C$
5. $\csc^2 kx$	$-\frac{1}{k}\cot kx + C$	12. $\frac{1}{x\sqrt{k^2x^2-1}}$	$\sec^{-1}kx + C, kx > 1$
6. sec kx tan kx	$\frac{1}{k} \sec kx + C$	13. <i>a</i> ^{kx}	$\left(\frac{1}{k\ln a}\right)a^{kx} + C, \ a > 0, \ a \neq$
7. $\csc kx \cot kx$	$-\frac{1}{k}\csc kx + C$		

TABLE 4.3 Antiderivative linearity rules

	Function	General antiderivative
1. Constant Multiple Rule:	kf(x)	kF(x) + C, k a constant
2. Sum or Difference Rule:	$f(x) \pm g(x)$	$F(x) \pm G(x) + C$

EXAMPLE 4 Find the general antiderivative of

$$f(x) = \frac{3}{\sqrt{x}} + \sin 2x.$$

Indefinite Integrals

DEFINITION The collection of all antiderivatives of f is called the **indefinite integral** of f with respect to x, and is denoted by

$$\int f(x)\,dx$$

The symbol \int is an **integral sign**. The function *f* is the **integrand** of the integral, and *x* is the **variable of integration**.

EXAMPLE 6 Evaluate

 $\int (x^2 - 2x + 5) \, dx.$