Analyzing Functions from Derivatives

Answer the following questions about the functions whose derivatives are given in Exercises 1–14:

- a. What are the critical points of f?
- **b.** On what intervals is *f* increasing or decreasing?
- c. At what points, if any, does f assume local maximum and minimum values?

1.
$$f'(x) = x(x-1)$$

1.
$$f'(x) = x(x-1)$$
 2. $f'(x) = (x-1)(x+2)$

3.
$$f'(x) = (x-1)^2(x+2)$$
 4. $f'(x) = (x-1)^2(x+2)^2$

4.
$$f'(x) = (x-1)^2(x+2)^2$$

5.
$$f'(x) = (x - 1)e^{-x}$$

6.
$$f'(x) = (x - 7)(x + 1)(x + 5)$$

7.
$$f'(x) = \frac{x^2(x-1)}{x+2}, \quad x \neq -2$$

Identifying Extrema

In Exercises 15-44:

- a. Find the open intervals on which the function is increasing and decreasing.
- **b.** Identify the function's local and absolute extreme values, if any, saying where they occur.

31.
$$f(x) = x - 6\sqrt{x - 1}$$

31.
$$f(x) = x - 6\sqrt{x - 1}$$
 32. $g(x) = 4\sqrt{x} - x^2 + 3$

33.
$$g(x) = x\sqrt{8-x^2}$$

33.
$$g(x) = x\sqrt{8-x^2}$$
 34. $g(x) = x^2\sqrt{5-x}$

35.
$$f(x) = \frac{x^2 - 3}{x - 2}$$
, $x \ne 2$ **36.** $f(x) = \frac{x^3}{3x^2 + 1}$

36.
$$f(x) = \frac{x^3}{3x^2 + 1}$$

37.
$$f(x) = x^{1/3}(x + 8)$$

37.
$$f(x) = x^{1/3}(x+8)$$
 38. $g(x) = x^{2/3}(x+5)$

EXAMPLE 9

Sketch the graph of $f(x) = \frac{x^2 + 4}{2x}$.

Solution

1. The domain of f is all nonzero real numbers. There are no intercepts because neither x nor f(x) can be zero. Since f(-x) = -f(x), we note that f is an odd function, so the graph of f is symmetric about the origin.

2

$$f(x) = \frac{x^2 + 4}{2x} = \frac{x}{2} + \frac{2}{x}$$

$$f'(x) = \frac{1}{2} - \frac{2}{x^2} = \frac{x^2 - 4}{2x^2}$$

$$f''(x) = \frac{4}{x^3}$$

3. Behavior at critical points.

4. Increasing and decreasing.

5. Inflection points.

6. Asymptotes.

7. The graph of f is sketched in Figure 4.32.

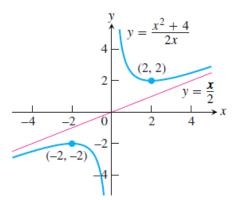


FIGURE 4.32 The graph of $y = \frac{x^2 + 4}{2x}$ (Example 9).

Solution The domain of f is $(-\infty, 0) \bigcup (0, \infty)$ and there are no symmetries about either axis or the origin. The derivatives of f are

$$f'(x) = e^{2/x} \left(-\frac{2}{x^2} \right) = -\frac{2e^{2/x}}{x^2}$$

and

$$f''(x) = \frac{x^2 (2e^{2/x})(-2/x^2) - 2e^{2/x}(2x)}{x^4} = \frac{4e^{2/x}(1+x)}{x^4}.$$

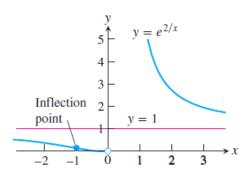


FIGURE 4.33 The graph of $y = e^{2/x}$ has a point of inflection at $(-1, e^{-2})$. The line y = 1 is a horizontal asymptote and x = 0 is a vertical asymptote (Example 10).

112. Suppose the derivative of the function y = f(x) is

$$y' = (x - 1)^2(x - 2)(x - 4).$$

At what points, if any, does the graph of f have a local minimum, local maximum, or point of inflection?

4.5 Indeterminate Forms and L'Hôpital's Rule

Determinate-Indeterminate Forms Table	
Indeterminate Forms	Determinate Forms
0/0	$\infty + \infty = \infty$
$\pm \infty / \pm \infty$	$-\infty-\infty=-\infty$
$\infty - \infty$	$0^{\infty}=0$
$0(\infty)$	$0^{-\infty} = \infty$
00	$(\infty)\cdot(\infty)=\infty$
1^{∞}	
∞^0	
Use L'Hôpital's Rule	Do <i>Not</i> Use L'Hôpital's Rule

THEOREM 6— L'Hôpital's Rule Suppose that f(a) = g(a) = 0, that f and g are differentiable on an open interval I containing a, and that $g'(x) \neq 0$ on I if $x \neq a$. Then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)},$$

assuming that the limit on the right side of this equation exists.

Caution

To apply l'Hôpital's Rule to f/g, divide the derivative of f by the derivative of g. Do not fall into the trap of taking the derivative of f/g. The quotient to use is f'/g', not (f/g)'.

Applying l'Hôpital's Rule

Use l'Hôpital's rule to find the limits in Exercises 7–50.

37.
$$\lim_{x \to \infty} (\ln 2x - \ln (x + 1))$$

39.
$$\lim_{x \to 0^+} \frac{(\ln x)^2}{\ln(\sin x)}$$

41.
$$\lim_{x \to 1^+} \left(\frac{1}{x-1} - \frac{1}{\ln x} \right)$$

45.
$$\lim_{t\to\infty} \frac{e^t + t^2}{e^t - t}$$

47.
$$\lim_{x \to 0} \frac{x - \sin x}{x \tan x}$$

46.
$$\lim_{x \to \infty} x^2 e^{-x}$$

48.
$$\lim_{x \to 0} \frac{(e^x - 1)^2}{x \sin x}$$

Indeterminate Powers and Products

63.
$$\lim_{x\to 0^+} x^2 \ln x$$

64.
$$\lim_{x \to 0^+} x (\ln x)^2$$

65.
$$\lim_{x \to 0^+} x \tan\left(\frac{\pi}{2} - x\right)$$
 66. $\lim_{x \to 0^+} \sin x \cdot \ln x$

$$66. \quad \lim_{x \to 0^+} \sin x \cdot \ln x$$

Indeterminite Powers

If
$$\lim_{x\to a} \ln f(x) = L$$
, then

$$\lim_{x \to a} f(x) = \lim_{x \to a} e^{\ln f(x)} = e^{L}.$$

Here a may be either finite or infinite.

$$53. \lim_{x \to \infty} (\ln x)^{1/x}$$

54.
$$\lim_{x \to e^+} (\ln x)^{1/(x-e)}$$

59.
$$\lim_{x\to 0^+} x^x$$

60.
$$\lim_{x\to 0^+} \left(1 + \frac{1}{x}\right)^x$$

$$61. \lim_{x \to \infty} \left(\frac{x+2}{x-1} \right)^{\frac{1}{2}}$$

61.
$$\lim_{x \to \infty} \left(\frac{x+2}{x-1} \right)^x$$
 62. $\lim_{x \to \infty} \left(\frac{x^2+1}{x+2} \right)^{1/x}$

a. Use l'Hôpital's Rule to show that

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e.$$