4

- 4.1 Extreme Values of Functions on Closed Intervals
- 4.2 The Mean Value Theorem

Applications of Derivatives

4.1 Extreme Values of Functions on Closed Intervals

DEFINITIONS Let f be a function with domain D. Then f has an **absolute** maximum value on D at a point c if

$$f(x) \le f(c)$$
 for all x in D

and an **absolute minimum** value on D at c if

$$f(x) \ge f(c)$$
 for all x in D .

Maximum and minimum values are called **extreme values** of the function f. Absolute maxima or minima are also referred to as **global** maxima or minima.

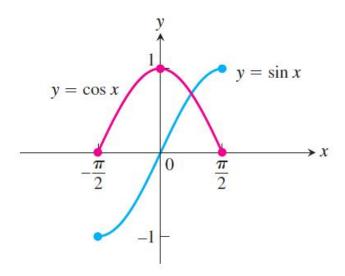


FIGURE 4.1 Absolute extrema for the sine and cosine functions on $[-\pi/2, \pi/2]$. These values can depend on the domain of a function.

EXAMPLE 1 The absolute extrema of the following functions on their domains can be seen in Figure 4.2. Notice that a function might not have a maximum or minimum if the domain is unbounded or fails to contain an endpoint.

Function rule	Domain D	Absolute extrema on D
(a) $y = x^2$	$(-\infty, \infty)$	No absolute maximum. Absolute minimum of 0 at $x = 0$.
(b) $y = x^2$	[0, 2]	Absolute maximum of 4 at $x = 2$. Absolute minimum of 0 at $x = 0$.
(c) $y = x^2$	(0, 2]	Absolute maximum of 4 at $x = 2$. No absolute minimum.
(d) $y = x^2$	(0, 2)	No absolute extrema.

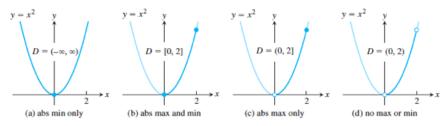


FIGURE 4.2 Graphs for Example 1.

THEOREM 1—The Extreme Value Theorem If f is continuous on a closed interval [a, b], then f attains both an absolute maximum value M and an absolute minimum value m in [a, b]. That is, there are numbers x_1 and x_2 in [a, b] with $f(x_1) = m$, $f(x_2) = M$, and $m \le f(x) \le M$ for every other x in [a, b].

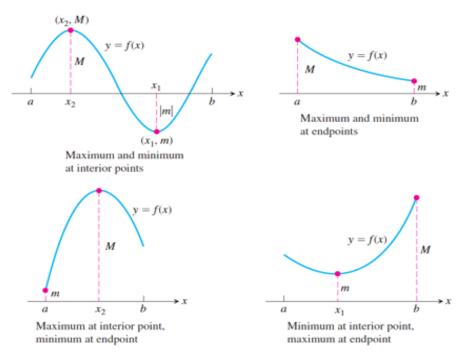


FIGURE 4.3 Some possibilities for a continuous function's maximum and minimum on a closed interval [a, b].

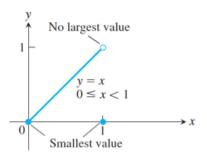


FIGURE 4.4 Even a single point of discontinuity can keep a function from having either a maximum or minimum value on a closed interval. The function

$$y = \begin{cases} x, & 0 \le x < 1 \\ 0, & x = 1 \end{cases}$$

is continuous at every point of [0, 1] except x = 1, yet its graph over [0, 1] does not have a highest point.

DEFINITIONS A function f has a **local maximum** value at a point c within its domain D if $f(x) \le f(c)$ for all $x \in D$ lying in some open interval containing c.

A function f has a **local minimum** value at a point c within its domain D if $f(x) \ge f(c)$ for all $x \in D$ lying in some open interval containing c.

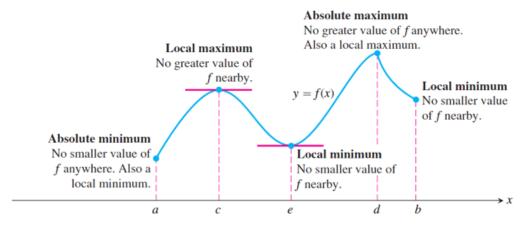


FIGURE 4.5 How to identify types of maxima and minima for a function with domain $a \le x \le b$.

THEOREM 2—The First Derivative Theorem for Local Extreme Values If f has a local maximum or minimum value at an interior point c of its domain, and if f' is defined at c, then

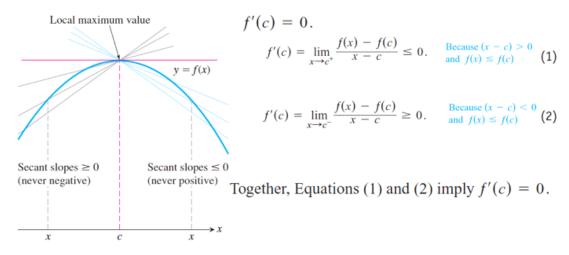


FIGURE 4.6 A curve with a local maximum value. The slope at *c*, simultaneously the limit of nonpositive numbers and nonnegative numbers, is zero.

Theorem 2 says that a function's first derivative is always zero at an interior point where the function has a local extreme value and the derivative is defined. Hence the only places where a function f can possibly have an extreme value (local or global) are

- 1. interior points where f' = 0,
- 2. interior points where f' is undefined,
- 3. endpoints of the domain of f.

The following definition helps us to summarize.

DEFINITION An interior point of the domain of a function f where f' is zero or undefined is a critical point of f.

How to Find the Absolute Extrema of a Continuous Function f on a Finite Closed Interval

- 1. Evaluate f at all critical points and endpoints.
- 2. Take the largest and smallest of these values.

EXAMPLE 3 Find the absolute maximum and minimum values of $f(x) = 10x(2 - \ln x)$ on the interval $[1, e^2]$.

THEOREM 3—Rolle's Theorem Suppose that y = f(x) is continuous at every point of the closed interval [a, b] and differentiable at every point of its interior (a, b). If f(a) = f(b), then there is at least one number c in (a, b) at which f'(c) = 0.

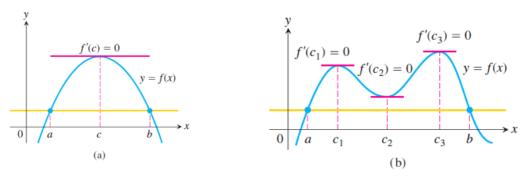


FIGURE 4.10 Rolle's Theorem says that a differentiable curve has at least one horizontal tangent between any two points where it crosses a horizontal line. It may have just one (a), or it may have more (b).

The hypotheses of Theorem 3 are essential. If they fail at even one point, the graph may not have a horizontal tangent (Figure 4.11).

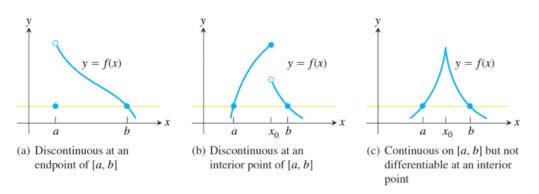


FIGURE 4.11 There may be no horizontal tangent if the hypotheses of Rolle's Theorem do not hold.

EXAMPLE 1 Show that the equation

$$x^3 + 3x + 1 = 0$$

has exactly one real solution.

THEOREM 4—The Mean Value Theorem Suppose y = f(x) is continuous on a closed interval [a, b] and differentiable on the interval's interior (a, b). Then there is at least one point c in (a, b) at which

$$\frac{f(b) - f(a)}{b - a} = f'(c). \tag{1}$$

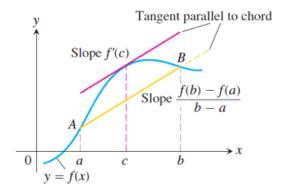


FIGURE 4.13 Geometrically, the Mean Value Theorem says that somewhere between *a* and *b* the curve has at least one tangent parallel to chord *AB*.

EXAMPLE 3 If a car accelerating from zero takes 8 sec to go 352 ft, its average velocity for the 8-sec interval is 352/8 = 44 ft/sec. The Mean Value Theorem says that at some point during the acceleration the speedometer must read exactly 30 mph (44 ft/sec) (Figure 4.18).

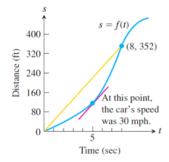


FIGURE 4.18 Distance versus elapsed time for the car in Example 3.

COROLLARY 1 If f'(x) = 0 at each point x of an open interval (a, b), then f(x) = C for all $x \in (a, b)$, where C is a constant.

COROLLARY 2 If f'(x) = g'(x) at each point x in an open interval (a, b), then there exists a constant C such that f(x) = g(x) + C for all $x \in (a, b)$. That is, f - g is a constant function on (a, b).

EXAMPLE 4 Find the function f(x) whose derivative is $\sin x$ and whose graph passes through the point (0, 2).

EXAMPLE

Proof that $\ln bx = \ln b + \ln x$

EXAMPLE Proof that $\ln x^r = r \ln x$

Laws of Exponents

The laws of exponents for the natural exponential e^x are consequences of the algebraic properties of $\ln x$. They follow from the inverse relationship between these functions.

Laws of Exponents for e^x

For all numbers x, x_1 , and x_2 , the natural exponential e^x obeys the following laws:

1.
$$e^{x_1} \cdot e^{x_2} = e^{x_1 + x_2}$$

2.
$$e^{-x} = \frac{1}{e^x}$$

$$3. \frac{e^{x_1}}{e^{x_2}} = e^{x_1 - x_2}$$

4.
$$(e^{x_1})^{x_2} = e^{x_1x_2} = (e^{x_2})^{x_1}$$