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: i Extreme Values of Functions on Closed Intervals
m The Mean Value Theorem

Applications of

Derivatives

m Extreme Values of Functions on Closed Intervals

DEFINITIONS Let f be a function with domain D. Then f has an absoiute
maximum value on D at a point ¢ if

flx) = f(e) forall x in D
and an absolute miiimum value on D at e if

flx) = fle) forall x in D.

Maximum and minimum values are called extreme values of the function /. Absolute
maxima or minima are also referred to as global maxima or minima.

ovs e
yow”
‘\/ \/ N
ob) oY
N~
J munfj
y o-l'j \M\V‘}' N
% ot T
/ 1e{ .
y=SInx '
y =cosx N AL n\uxa \,qlw,efbmx
vv‘[—\’\/u F/L]
/1 - > X
ab
PR ](
w0
VZoﬂ\ o$ L s ]
S N2 a5 e valne @1
Sinx oww (e Je)

FIGURE 4.1 Absolute extrema for
the sine and cosine functions on
[-#/2,

7/2]. These values can depend
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the sine and cosine functions on
[—m/2, w/2]. These values can depend
on the domain of a function.

EXAMPLE 1 The absolute extrema of the following functions on their domains can be seen
in Figure 4.2. Notice that a function might not have a maximum or minimum if the domain is
unbounded or fails to contain an endpoint.

Function rule Domain D Absolute extrema on D
(@ y=x" (—o0, 00) No absolute maximum.
Absolute minimum of 0 at x = 0.
(b) y=x* [0,2] Absolute maximum of 4 at x = 2,
Absolute minimum of 0 at x = 0.
(c) y=2x2 (0,2] Absolute maximum of 4 at x = 2.
No absolute minimum.
@ y=x (0,2) No absolute extrema. é
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(a) abs min only (b) abs max and min

FIGURE 4.2 Graphs for Example 1.
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THEOREM 1—The Extreme Value Theorem  If f is ¢ontigyous on a closed interval

[a. b], then f attains both an absolute maximum value M and an absolute
minimum value m in [a, b]. That is, there are numbers x; and x; in
[a, b] with f(x;) = m, f(x2) = M, and m = f(x) = M for every other x in
[a. b].
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FIGURE 4.3 Some possibilities for a continuous function’s maximum and

minimum on a closed interval [a, b].
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FIGURE 4.4 Even a single point of
discontinuity can keep a function from
having either a maximum or minimum
value on a closed interval. The function

\,y _ {x.

0, x=le

0=x<1

is continuous at every point of [0, 1]
except x = 1, yet its graph over [0, 1]
does not have a highest point.
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DEFINITIONS A function f has a local maximum value at a point ¢ within its
domain D if f(x) = f(c) for all x € D lying in some open interval containing c.

A function f has a local minimum value at a point ¢ within its domain D if
f(x) = f(c) for all x € D lying in some open interval containing c.

Absolute maximum
No greater value offanyw here.
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FIGURE 4.5 How to identify types of maxima and minima for a function with domain

a=x=h

THEOREM 2—The First Derivative Theorem for Local Extreme Values  If f hasa
local maximum or minimum value at an interior point ¢ of its domain, and if /' is
defined at ¢, then

Local maximum value f"((.) = (.
' _flx) = fle) ecause (x = ¢) = 0
o f'e) = ;1—I> .......... = = 0. i;nd .fd.\]l n.-ly (1)
y=Jjx
o= nm I =L =0 IO @

Secant slopes = 0
(never ncgaliw:)

Secant slopes = 0
(never pnsili\«'l:)

Together, Equations (1) and (2) imply f'(¢) = 0.
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FIGURE 4.6 A curve with a local ‘0,
maximum value. The slope at ¢, ‘f ” ”W d
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simultancously the limit of nonpositive
numbers and nonnegative numbers, is zero.

Theorem 2 says that a function’s first derivative is always zero at an interior point
where the function has a local extreme value and the derivative is defined. Hence the only

places where a fu%{:an possibly have an extreme value (local or global) are
. . . —,—_—l ocal mXfmi'y

1. interior points where[f =0 abs ehlmip

2. interior points where[ f" is undefined, i

3. endpoints of the domain of f.

The following definition helps us to summarize.

DEFINITION~ An interior point of the domain of a function f where f” is@8H0)

orlifUEHIREY is a critical point of f.
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How to Find the Absolute Extrema of a Continucus Function f on a
Finite Closed Interval
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How to Find the Absolute Extrema of a Continucus Function f on a
Finite Closed Interval

(1) Evaluate f at all critical points and endpoints.

2 Take the }ﬂrgg,st and smallest of these values.
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EXAMPLE 3  Find the absolute maximum and minimum values offﬁ) = 10x(2 — Inx)
on the interval [1, e?]. -
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m The Mean Value Theorem

THEOREM 3—Rolle's Theorem  Suppose that y = f(x) is continuous at every
point of the _cm_cd_i.n.l.c'rval [a, b] and differentiable at every point of its interior

(a, b). If,f{a) = f(b)., then there is at least one number ¢ in (a, b) at which
f'le) = 0
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FIGURE 4.10 Rolle’s Theorem says that a differentiable curve has at least one
horizontal tangent between any two points where & crosses a horizontal line. It may
have just one (&)}, or it may have more {b).
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The hypotheses of Theorem 3 are essential. If they fail at even one point, the graph

may not have a horizontal tangent (Figure 4.11). 2 Role/s i
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(a) Discontinuous at an %™ (b) Discontinuous at an (c) Continuous on |a, b| but not
endpoint of [a. b] interior point of [a, b] differentiable at an interior

point

FIGURE 4.11  There may be no horizontal tangent if the hypotheses of Rolle’s Theorem do not hold.

EXAMPLE 1  Show that the equation

N\

has exactly one real solution.
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THEOREM 4—The Mean Value Theorem  Suppose y = f(x) is continuous on a
closed interval [, £] and differentiable on the interval’s interior (a, #). Then there
is at least one point ¢ in (a. b) at which

m(\\“'\ {f(h) f(a) = f'(¢ }1 conclvion (1)

fho cond l,q = MV,; (a8)
{hy 9 @2) | wi | o '{c)-.-l.Li);M

: e
Tangent parallel to ¢ \V(UFC
//

o

1 of
s{"a‘j' of = = seamd
[ . - - "‘n(‘"«f Irhe
f(a)’i 'ﬂ‘) -{@&) e
i b—a

Pl . rToTT 'fu?wl //Jc.coh‘['

0 *> X

y=fx)

FIGURE 4.13 Geometrically, the Mean
Value Theorem says that somewhere
between a and b the curve has at least one
tangent parallel to chord 45.
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EXAMPLE 3 If a car accelerating from zero takes@ec to go 352 ft, its average veloc-
ity for the 8-sec interval is 352/8 = 44 ft/sec. The Mean Value Theorem says that at some
point during the acceleration the speedometer must read exactly 30 mph (44 fi/sec)

(Figure 4.18). ( .( 52 -V
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COROLLARY 1 Iflf'(x) = q at each point x of an open mllm[val (a, b), then
= ( forall .b), Ci tant.
f(x) or all x e (a. b), where C is a constan {(m) [(L)-.f(h) Qf
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COROLLARY 2 If f'(x) = g'(x) at each point.x in an open interval (a, b), then
there exists a constant C such that f(x) = g(x) + C for all xe (a, b). That is,

f — g s a constant function on (a, b).
foozgl) o [fR=gt1 € |

EXAMPLE 4  Find the function f(x) whose derivative is sin x and whose graph passes
through the point (0, 2). 1 . )'JP g
— ' wsie 2 4o = - cox +@%v (rtord
{'(0) s 2. A
{(0) c-wi+C = Z
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Laws of Exponents

The laws of exponents for the natural exponential ¢ are consequences of the algebraic
properties of In x. They follow from the inverse relationship between these functions.

Laws of Exponents for ¢
For all numbers x, x;, and x. the natural exponential ¢ obeys the following laws:
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