Lecture

Sunday, November 01, 2020 8:08 PM

3 9 | Inverse Trigonometric Functions
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EXAMPLE 1 The accompanying figures show two values of tan™' x.
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We find the derivative of y = sin™' x by applying Theorem 3 with f(x) = sinx and
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TABLE 2.1 Derivatives of the inverse trigonometric functions
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EXAMPLE 1 Water runs into a conical tank at the rate of 9 fi’/min. The tank stands

point down and has a height of 10 ft and a base radius of 5 fi. How fast is the water level

Porticudy mprenl d\a'va of = 7_ _
& d al e gmoner/

dy Solution  Figure 3.43 shows a partially filled conical tank. The variables in the problem are 0\1‘:6 ﬁl
dr )
\‘A’hv:ll y=61t V = volume (ft*) of the water in the tank at time  (min)

x = radius (ft) of the surface of the water at time 7

» = depth (ft) of the water in the tank at time ¢.
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wheny =6ft
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FIGURE 3.43 The geometry of the

conical tank and the rate at which water CI N

fills the tank determine how fast the water v <

level rises (Example 1). Ql %4{5 /%
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volume (ft”) of the water in the tank at time 7 (min)

= radius (ft) of the surface of the water at time 7

depth (ft) of the water in the tank at time 7.
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Related Rates Problem Strategy

1. Draw a picture and name the variables and constants. Use t for time. Assume
that all variables are differentiable functions of 7.

. Write down the numerical information (in terms of the symbols you have chosen).

o

. Write down what you are asked to find (usually a rate, expressed as a derivative).

-

. Write an equation that relates the variables. You may have to combine two or
more equations to get a single equation that relates the variable whose rate
you want to the variables whose rates you know.

S. Difjerentiate with respect to t. Then express the rate you want in terms of the

rates and variables whose values you know.

6. Evaluate. Use known values to find the unknown rate.

EXAMPLE 2

A hot air balloon rising straight up from a level field is tracked by a range

do

rri 0.14
when 6 = ﬂ _
yldt
/ when 6 = w/4
_,Hﬁu) (
Range \ f
finder Cy )

500 fi
WV

FIGURE 3.44 The rate of change of the
balloon’s height is related to the rate of
change of the angle the range finder makes
with the ground (Example 2).
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finder 500 ft from the lifioff point. At the moment the range finder’s elevation angle is
/4, the angle is increasing at the rate ofwm. How fast is the balloon rising at

that moment?

Solution
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We answer the question in six steps. b manend wher /[f_ Wan g1y
1.  Draw a picture and name the variables and constants (Figure 3.44). The variables in z

the picture are

8 = the angle in radians the range finder makes with the ground.

y = the height in feet of the balloon.
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13. Asliding ladder A _13-fi Jadder is leaning against a house when
its base starts to slide away (see accompanying figure). By the

time the base is ]’&_ m the house, the base is moving at the

rate of 5 fi/sec.~> gy /j_e(

a. How fast is the top of the ladder sliding down the wall then?

b. At what rate is the area of the triangle formed by the ladder,
wall, and ground changing then?

¢. Atwhat rate is the angle # between the ladder and the ground

changing then?
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y=x"and its tangent y = 2x — 1 at (1, Lr

Tangent and curve very close near (1, 1).

12 1.003
12 N
200w fh
~re
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0.8 112 0.997 L !
08 0.997 N

Tangent and curve very close throughout
entire x-interval shown,

Tangent and curve closer still. Compute: v

screen cannot distinguish tangent from (‘U 5/

curve on this x-interval. ﬁ\”
/Un

FIGURE 3.49 The more we magnify the graph of a function near a point where the
function is differentiable, the flatter the graph becomes and the more it resembles its
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entire x-interval shown, screen cannot distinguish tangent from Jwy o
curve on this x-interval. ﬁ‘b{ ﬁ_(
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FIGURE 3.49 The more we magnify the graph of a function near a point where the w i *% /4{
function is differentiable, the flatter the graph becomes and the more it resembles its o
tangent. Ih< /41 /4
@
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Figure 3.52
The tangent to the curve V= f(x)at x=a
istheline L(x)= f(a)+ f'(a)(x—a).

¥ y=f®) Py
Slope =f'(a) kg, of Tt b

wperd 1™ | - foge{le) (o) |
,, Ww[d fo)={le) (-

|
|
|
] 5 M‘/M.o/-ﬂx’ af x4
0 @ X -
)Xz +{x)
1
Nvie bicasvegs, b
1 agpeonivg Tt

DEFINITIONS If f is differentiable at x = a, then the approximating function

( Lix) = fla) + f'(a)x — a)
15 the linearization of fat a. The approximation

[T = 1) Jrorbe o rtarjayy

of f by L 1s the standard linear approximation of f at a. The point x = a 1s the
center of the approximation.
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— "
EXAMPLE 1 Find the linearization of f{x) = V1 + xat x = 0 (Figure 3.51).
[
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FIGURE 3.52 Magnified view of the

FIGURE 3.51 Thepgraphofy = %1 + xandits
window in Figure 3.51,

linearizations at x = O and x = 3. Figure 3.52 shows a
magnified view of the small window about | on the y-axis.
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EXAMPLE 3 Find the linearization of f(x) = cosxat x = /2 (Figure 3.53).
Lera— e

e zcax~) () wlw
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FIGURE 3.53 The graph of fi{x) = cosx
and its linearization at x = ar/2 . Near
x=wf2 cosx = —x + (m/2)
(Example 3).
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Differentials

DEFINITION Let v = flx) be a differentiable function. The differential dx is
an independent variable. The differential dy 1s dy 1! (X)

s = Fix)dy. .
dy = f'(x)-dx \K&f: FW).J&(
/

{1y
EXAMPLE 4 {i)
M
INS—
(@) Finddyify — 21 370 — Sy= %47 eh
(b) Find the value of dy wheng = Landd = 02. dy 5. (1) v 1. 0,2 = 8.4

Solution
(a) dv = (5x* 4+ 37) dx
(b) Substituting x = | and dx = 0.2 in the expression for dv, we have

dv = (51 + 37)0.2 = 8.4.
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AL=fla)dx G
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‘When d(x is a small change in x.

the cormresponding change in
;I;:gent Q_l)(: AN the linearization is precisely dy.

/\H .
0 a a+dx

FIGURE 3.54 Geometrically, the differential dy is the change
AL in the linearization of f when x = a changes by an amount
dx = Ax.

Estimating with Differentials

Suppose we know the value of a differentiable function f(x) at a point @ and want to esti-
mate how much this value will change if we move to a nearby pointa + dx. If dx = Axis
small, then we can see from Figure 3.54 that Ay is approximately equal to the differential
dy. Since

fla + dx) = f(a) + Ay,  Av= %“fw "{\ (a)

N

fla + dx) 2 fla) + dy 7

) —

EXAMPLE 6  The radius r of a circle increases froma = 10 m to 10.1 m (Figure 3.55).
Use dA to estimate the inqrease in the circle’s area 4. Estimate the area of the enlarged cir-
cle and compare your estimate to the true area found by direct calculation.

o= O.|
—

Al = rre
Nie) szt -
Solution  Since/d = nr:}thc estimated increase is {r) 'ZL

QI\‘F{(/-\'A*ML‘“ = A'(a) dr = 2madr = 2m(10)(0.1) = 27 m®, dA :2']‘(' CI(-
AA =dA = 2wadr -

Thus, since A(r + Aﬁlir?»/A(r + d4, we have
FIGURE 3.55 When dr is \%‘4\. GWA\‘MM Aol =122, 01x H\rﬂ{ iy
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small compared with a, the 0 + 0.1)7=uA0) + 2

differential dA gives the estimate = (10 + 27 = 1027, A (10.) % (. Jwall
Ala + dr) = ma® + dA ot
(Example 6). The area of a circle of radius 10.1 m is approximately 10277 m?. (W\l‘rfe‘l N

The true area is rodivg

AL~ ﬁf/‘i ~y =10
A(10.1) = 7(10.1)
102017 m?, 2 exact |
—
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The error in our estimate is 0.017 m?, which is the difference A4 — dA4
-_— —————— ~
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