$$\int f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{y \to x} \frac{f(x) - f(y)}{x - y}$$

$$\int \frac{f'(x) - f'(y)}{y - y}$$

$$\int \frac{f'(x) - f'(y)}{y - y} = c f' \qquad (f - g)' = f' - g + f' - g'$$

$$\left(\frac{f}{g}\right)' = \frac{f'(y) - f'(y)}{g^2}$$

$$\left(\frac{f}{g}\right)' = 6x^5 \qquad (x^n)' = n \cdot x^{n-1}$$

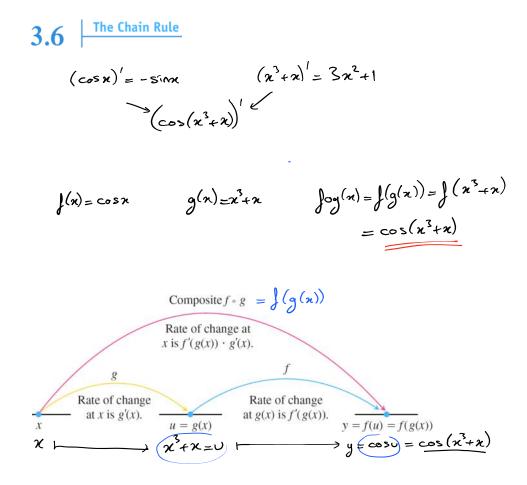
$$\left(e^{x}\right)' = 6x^5 \qquad (x^n)' = n \cdot x^{n-1}$$

$$\left(e^{x}\right)' = e^{x} \qquad (\sin x)' = \cos x \qquad (\cos x)' = -\sin x$$

$$\left(f - 2nx\right)' = \sec^2 x \qquad (\cosh x)' = -\csc^2 x \qquad (\sec x)' = \sec x \cdot \tan x$$

$$\left(c - 3cx\right)' = -\csc x \cdot \cot x$$

$$\left(x^n\right)' = x^n \cdot \tan x \qquad (x^n)' = x^n \cdot \tan x$$



THEOREM 2—The Chain Rule If f(u) is differentiable at the point u = g(x)and g(x) is differentiable at x, then the composite function $(f \circ g)(x) = f(g(x))$ is differentiable at x, and

$$(f \circ g)'(x) = f'(g(x)) \cdot g'(x).$$

In Leibniz's notation, if y = f(u) and u = g(x), then

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx},$$

where dy/du is evaluated at u = g(x).

$$b) y = sm(cosz) \implies y' =$$

$$(x) y = \sin^2 \qquad y' =$$

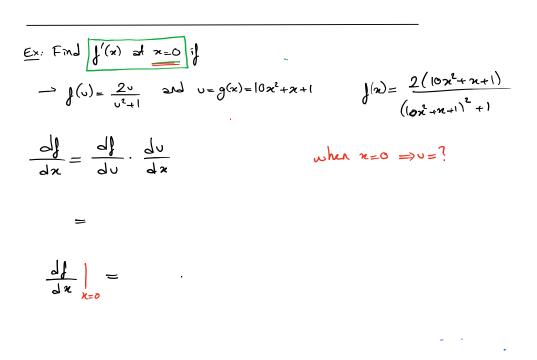
$$J) y = \sin^2(\cos(x^3)) \implies y' =$$

e)
$$y = \tan^3(\sec x) \implies y =$$

= $(\tan(\sec x))^3$
 $(A^3)' = 3A^2 \cdot A'$

$$\prod_{u=e^{x^{2}}-e^{\cos(x)} \Rightarrow y' =$$

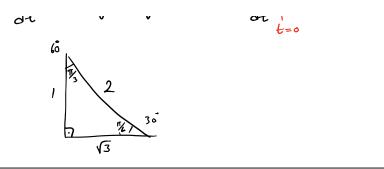
$$\begin{aligned} f) y &= e^{x^{2}} - e^{\cos(x)} \implies y' = \\ \implies (e^{A})' = e^{A} \cdot A' \\ g) y &= e^{(x^{3} + \cos(x))^{T} \cdot x} \implies e^{f \cdot y} = e^{f \cdot y} \cdot (f' \cdot y + f' \cdot y') \\ y' &= e^{(x^{3} + \cos(x))^{T} \cdot x} \end{aligned}$$

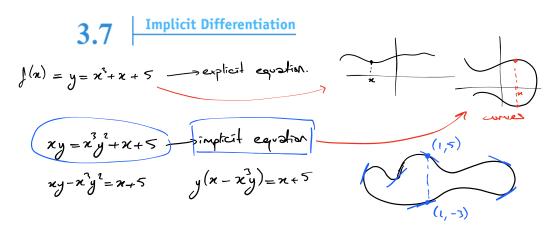


$$Ex: \iint r = sin(f(t)), f(0) = \frac{T}{3} \text{ and } f'(0) = 4 \text{ then}$$

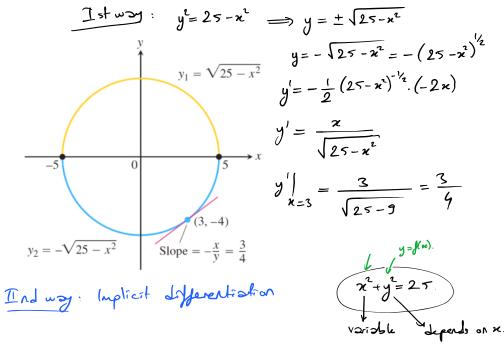
$$find \frac{dr}{dt} = t = 0.$$

$$\frac{dr}{dt} = cos(f(t)) \cdot f'(t) \qquad \frac{dr}{dt} = t = 0$$





EXAMPLE 2 Find the slope of the circle $x^2 + y^2 = 25$ at the point (3, -4).



I

Ex: Find
$$\frac{dy}{dx} = y'$$
 for the following curves.
a) $2xy + y^2 = x + y$

$$2ny+y^2 = x+y$$
 $\frac{dn}{dy} = \frac{dy}{du} = \frac{dy}{du}$

b)
$$x^{2}(x-y)^{2} = x^{2} - y^{2} \implies \frac{dy}{dx} = ?$$

c)
$$x^3 = \frac{2x - y}{x + 3y}$$

a)
$$x^4 + \sin y = x^3 y^2$$

e)
$$e^{2x} = \sin(x + 3y)$$

.

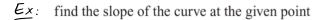
$\underline{\mathcal{E}} \times$: Find $dr/d\theta$

a)
$$\theta^{1/2} + r^{1/2} = 1$$

$$(\cos r + \cot \theta = e^{r\theta})$$

* Lx: If $xy + y^2 = 1$, find the value of d^2y/dx^2 at the point (0, -1).

· .

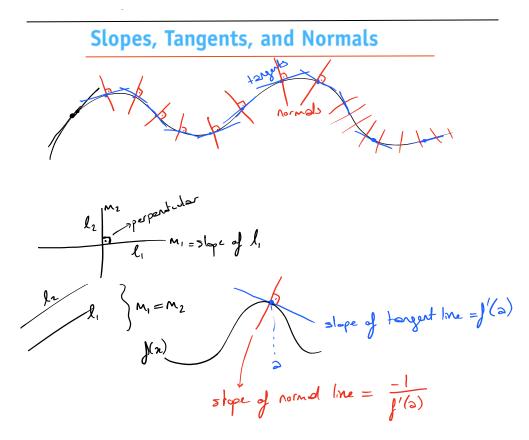


•

$$(x^{2} + y^{2})^{2} = (x - y)^{2}$$
 at (1, 0) and (1, -1)

-

1



 \mathcal{E}_{X} : (a) tangent and (b) normal to the curve

<u>Ex</u>: $x \sin 2y = y \cos 2x$, $(\pi/4, \pi/2) \implies y' = ?$ dx Derivatives of Inverse Functions and Logarithms

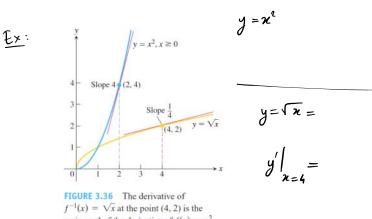
$$\frac{d}{dx} \begin{pmatrix} \int_{-1}^{-1} \langle x \rangle \end{pmatrix} = \begin{pmatrix} \int_{-1}^{-1} \langle x \rangle \end{pmatrix}' = \begin{pmatrix} \int_{-1}^{-1} \langle x \rangle \end{pmatrix} = \begin{pmatrix} \int_{-1}^{-$$

THEOREM 3—The Derivative Rule for Inverses If f has an interval I as domain and f'(x) exists and is never zero on I, then f^{-1} is differentiable at every point in its domain (the range of f). The value of $(f^{-1})'$ at a point b in the domain of f^{-1} is the reciprocal of the value of f' at the point $a = f^{-1}(b)$:

$$(f^{-1})'(b) = \frac{1}{f'(f^{-1}(b))}$$
(1)

or

$$\frac{df^{-1}}{dx}\Big|_{x=b} = \frac{1}{\frac{df}{dx}}\Big|_{x=f^{-1}(b)}$$



 $f^{-1}(x) = \sqrt{x}$ at the point (4, 2) is the reciprocal of the derivative of $f(x) = x^2$ at (2, 4) (Example 1).

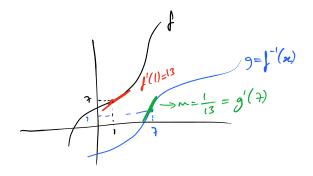
 $\frac{E_x}{g(x)} = \frac{1}{(1-1)^2} = \frac{1}{(1-1)^2} = \frac{1}{1-1} = \frac{1}{1-2}$

Week 4 Page 8

3.8

four des contrar de l'

$$g'(7) = (f'(x))'_{x=7} = \frac{1}{f'(f'(7))} = \frac{1}{f'(1)} = \frac{1}{13}$$



Derivative of the Natural Logarithm Function

$$\frac{d}{dx}\ln|x| = \frac{1}{x}, \quad x \neq 0$$

The Derivatives of a^u and $\log_a u$

$$\frac{d}{dx}a^u = a^u \ln a \ \frac{du}{dx}.$$

For
$$a > 0$$
 and $a \neq 1$,

$$\frac{d}{dx} \log_a u = \frac{1}{u \ln a} \frac{du}{dx}.$$
(7)

$$\log_{a} v = \frac{\ln v}{\ln s} \qquad \underline{E_{x:}} \left(\log_{5} x\right)' = \underbrace{E_{x:}} \left(\log_{5} x\right)' = \underbrace{E_{x:}} \left(\log_{5} x^{3} + s\right)' =$$

2

TExamo : Find u'= dy for the bollowing functions.

$$\underbrace{3Exonp}_{x}: \text{ Find } y' = \frac{dy}{dx} \text{ for the following functions.}$$

$$\underbrace{(1)}_{y} y = \ln x^{3}$$

(2)
$$y = (\ln x)^3$$

$$(3) \quad y = \ln\left(\ln\left(\ln x\right)\right)$$

(4)
$$y = \ln \frac{1}{x\sqrt{x+1}}$$

(c)
$$y = \ln \sqrt{\frac{(x+1)^3}{(x+2)^{20}}} =$$

 $(b) \quad y = \log_5 \sqrt{\left(\frac{7x}{3x+2}\right)^{\ln 5}}$

Logarithmic Differentiation
Differentiate
$$f(x) = x^x, x > 0$$
.
Take lu of both sizes
 $(\chi^2)' = 2\pi$
 $(\chi^2)' = 2\pi$
 $(\chi^2)' = 2\pi$

Toke derivative of both sides.

Examples: Find y'. (1) $x^y = y^x$

 $y = x^{\sin x}$

$$y = \sqrt[3]{\frac{x(x+1)(x-2)}{(x^2+1)(2x+3)}}$$

G

G