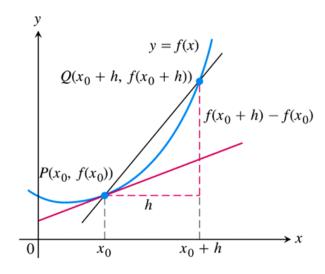
Chapter 3. Differentiation

3.1

Tangents and the Derivative at a Point

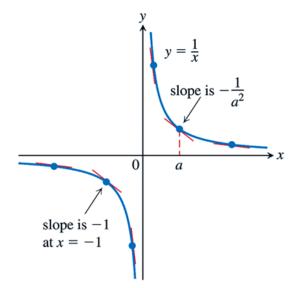


DEFINITIONS The slope of the curve y = f(x) at the point $P(x_0, f(x_0))$ is the number

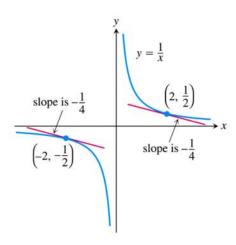
$$m = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
 (provided the limit exists).

The tangent line to the curve at *P* is the line through *P* with this slope.

EXAMPLE 1



Find the slope of the curve y = 1/x at any point $x = a \neq 0$. What is the slope at the point x = -1?



Definition 1

The derivative of a function f at a point x_0 , denoted

$$f'(x_0)$$
, is

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

provided this limit exists.

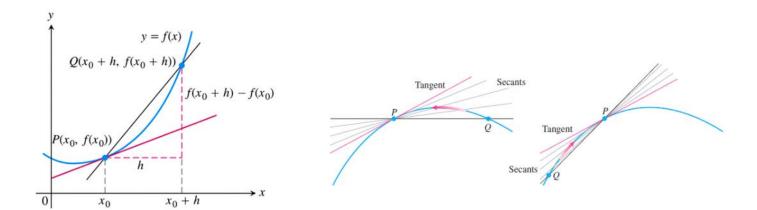


FIGURE 2.3 The tangent to the curve at P is the line through P whose slope is the limit of the secant slopes as $Q \rightarrow P$ from either side.

Summary

The following are all interpretations for the limit of the difference quotient

$$\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}.$$

- 1. The slope of the graph of y = f(x) at $x = x_0$
- 2. The slope of the tangent line to the curve y = f(x) at $x = x_0$
- 3. The rate of change of f(x) with respect to x at the $x = x_0$
- **4**. The derivative $f'(x_0)$ at $x = x_0$

Example

In Exercises 11-18, find the slope of the function's graph at the given point. Then find an equation for the line tangent to the graph there.

11.
$$f(x) = x^2 + 1$$
, (2, 5)

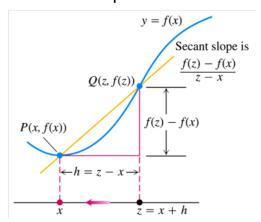
11.
$$f(x) = x^2 + 1$$
, (2, 5) **12.** $f(x) = x - 2x^2$, (1, -1)

DEFINITION The derivative of the function f(x) with respect to the variable x is the function f' whose value at x is

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h},$$

provided the limit exists.

Two forms for the difference quotient.



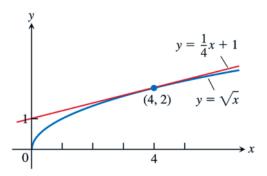
Derivative of f at x is $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{z \to x} \frac{f(z) - f(x)}{z - x}$

Alternative Formula for the Derivative

$$f'(x) = \lim_{z \to x} \frac{f(z) - f(x)}{z - x}.$$

EXAMPLE 2

- (a) Find the derivative of $f(x) = \sqrt{x}$ for x > 0.
- (b) Find the tangent line to the curve $y = \sqrt{x}$ at x = 4.



Notations

There are many ways to denote the derivative of a function y = f(x), where the independent variable is x and the dependent variable is y. Some common alternative notations for the derivative are

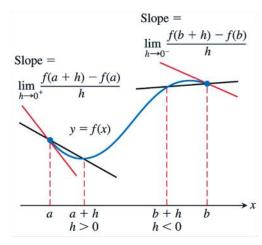
$$f'(x) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}f(x) = D(f)(x) = D_x f(x).$$

To indicate the value of a derivative at a specified number x = a, we use the notation

$$f'(a) = \frac{dy}{dx}\Big|_{x=a} = \frac{df}{dx}\Big|_{x=a} = \frac{d}{dx}f(x)\Big|_{x=a}.$$

Figure 3.7

Derivatives at endpoints of a closed interval are one-sided limits.



Differentiable on an Interval; One-Sided Derivatives

A function y = f(x) is differentiable on an open interval (finite or infinite) if it hat derivative at each point of the interval. It is differentiable on a closed interval [a, b] is differentiable on the interior (a, b) and if the limits

$$\lim_{h \to 0^+} \frac{f(a+h) - f(a)}{h}$$
 Right-hand derivative at a

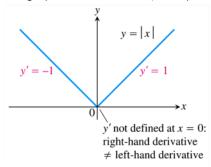
$$\lim_{h \to 0^-} \frac{f(b+h) - f(b)}{h}$$
 Left-hand derivative at b

exist at the endpoints (Figure 3.7).

EXAMPLE 4 Show that the function y = |x| is differentiable on $(-\infty, 0)$ and $(0, \infty)$ but has no derivative at x = 0.

Figure 3.8

The function y = |x| is not differentiable at the origin where the graph has a "corner" (Example 4).



(Figure 3.8). There is no derivative at the origin because the one-sided derivatives differ there:

Right-hand derivative of
$$|x|$$
 at zero $=\lim_{h\to 0^+} \frac{|0+h|-|0|}{h} = \lim_{h\to 0^+} \frac{|h|}{h}$

$$=\lim_{h\to 0^+} \frac{h}{h} \qquad |h| = h \text{ when } h > 0$$

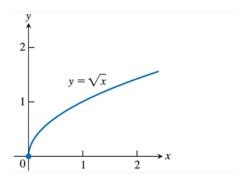
$$=\lim_{h\to 0^+} 1 = 1$$
Left-hand derivative of $|x|$ at zero $=\lim_{h\to 0^-} \frac{|0+h|-|0|}{h} = \lim_{h\to 0^-} \frac{|h|}{h}$

$$=\lim_{h\to 0^-} \frac{-h}{h} \qquad |h| = -h \text{ when } h < 0$$

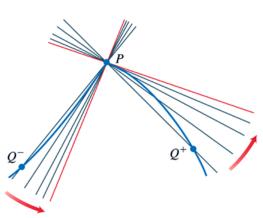
$$=\lim_{h\to 0^-} -1 = -1.$$

Figure 3.9

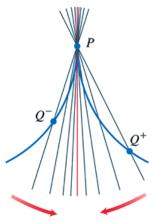
The square root function is not differentiable at x = 0, where the graph of the function has a vertical tangent line.



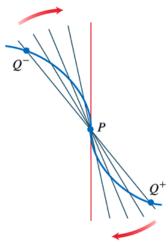
When Does a Function Not Have a Derivative at a Point?



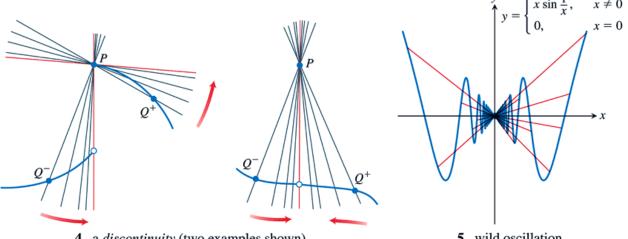
1. a *corner*, where the one-sided derivatives differ



2. a *cusp*, where the slope of PQapproaches ∞ from one side and $-\infty$ from the other



3. a vertical tangent line, where the slope of PQ approaches ∞ from both sides or approaches $-\infty$ from both sides (here, $-\infty$)



4. a discontinuity (two examples shown)

5. wild oscillation

Differentiable Functions Are Continuous

A function is continuous at every point where it has a derivative.

THEOREM 1—Differentiability Implies Continuity x = c, then f is continuous at x = c.

If f has a derivative at

Differentiation Rules

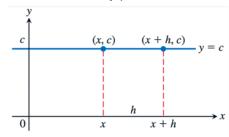
Derivative of a Constant Function

If f has the constant value f(x) = c, then

$$\frac{df}{dx} = \frac{d}{dx}(c) = 0.$$

The rule $\left(\frac{d}{dx}\right)(c) = 0$ is another way to say that the values

of constant functions never change and that the slope of a horizontal line is zero at every point.



Power Rule (General Version)

If n is any real number, then

$$\frac{d}{dx}x^n = nx^{n-1},$$

for all x where the powers x^n and x^{n-1} are defined.

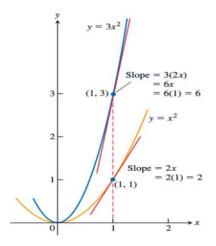
EXAMPLE 1 Differentiate the following powers of x.

- (a) x^3 (b) $x^{2/3}$ (c) $x^{\sqrt{2}}$ (d) $\frac{1}{x^4}$ (e) $x^{-4/3}$ (f) $\sqrt{x^{2+\pi}}$

Derivative Constant Multiple Rule

If u is a differentiable function of x, and c is a constant, then

$$\frac{d}{dx}(cu) = c\frac{du}{dx}.$$



The graphs of $y = x^2$ and $y = 3x^2$.

(b) Negative of a function

The derivative of the negative of a differentiable function u is the negative of the function's derivative. The Constant Multiple Rule with c=-1 gives

$$\frac{d}{dx}(-u) = \frac{d}{dx}(-1 \cdot u) = -1 \cdot \frac{d}{dx}(u) = -\frac{du}{dx}.$$

Derivative Sum Rule

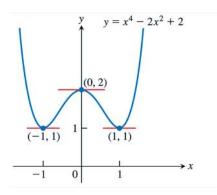
If u and v are differentiable functions of x, then their sum u + v is differentiable at every point where u and v are both differentiable. At such points,

$$\frac{d}{dx}(u+v) = \frac{du}{dx} + \frac{dv}{dx}.$$

EXAMPLE 3 Find the derivative of the polynomial $y = x^3 + \frac{4}{3}x^2 - 5x + 1$.

EXAMPLE 4 Does the curve $y = x^4 - 2x^2 + 2$ have any horizontal tangents? If so, where?

The curve in Example 4 and its horizontal tangents.



Derivative of the Natural Exponential Function

$$\frac{d}{dx}(e^x) = e^x$$

EXAMPLE 5 Find an equation for a line that is tangent to the graph of $y = e^x$ and goes through the origin.

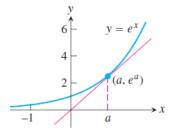


FIGURE 3.13 The line through the origin is tangent to the graph of $y = e^x$ when a = 1 (Example 5).

Derivative Product Rule

If u and v are differentiable at x, then so is their product uv, and

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}.$$

$$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x).$$

EXAMPLE 6 Find the derivative of (a) $y = \frac{1}{x}(x^2 + e^x)$,

Derivative Quotient Rule

If u and v are differentiable at x and if $v(x) \neq 0$, then the quotient u/v is differentiable at x, and

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}.$$

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{g^2(x)}.$$

EXAMPLE 8 Find the derivative of (a) $y = \frac{t^2 - 1}{t^3 + 1}$, (b) $y = e^{-x}$.

Second- and Higher-Order Derivatives

If y = f(x) is a differentiable function, then its derivative f'(x) is also a function. If f' is also differentiable, then we can differentiate f' to get a new function of x denoted by f''. So f'' = (f')'. The function f'' is called the **second derivative** of f because it is the derivative of the first derivative. It is written in several ways:

$$f''(x) = \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{dy'}{dx} = y'' = D^2(f)(x) = D_x^2 f(x).$$

$$y''' = dy''/dx = d^3y/dx^3,$$

$$y^{(n)} = \frac{d}{dx}y^{(n-1)} = \frac{d^ny}{dx^n} = D^ny$$

The first four derivatives of $y = x^3 - 3x^2 + 2$ are **EXAMPLE 10**

> First derivative: $v' = 3x^2 - 6x$

Second derivative: y'' = 6x - 6

Third derivative: y''' = 6

Fourth derivative: $v^{(4)} = 0$.

37.
$$y = \sqrt[q]{x^2} - x^e$$

37.
$$y = \sqrt[q]{x^2} - x^e$$
 23. $f(s) = \frac{\sqrt{s} - 1}{\sqrt{s} + 1}$

34.
$$y = x^{-3/5} + \pi^{3/2}$$

34.
$$y = x^{-3/5} + \pi^{3/2}$$
 48. $u = \frac{(x^2 + x)(x^2 - x + 1)}{x^4}$

Derivatives of Trigonometric Functions

The derivative of the sine function is the cosine function:

$$\frac{d}{dx}(\sin x) = \cos x.$$

$$\sin(x + h) = \sin x \cos h + \cos x \sin h.$$

If $f(x) = \sin x$, then

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$$
Derivative definition
$$= \lim_{h \to 0} \frac{(\sin x \cos h + \cos x \sin h) - \sin x}{h} = \lim_{h \to 0} \frac{\sin x (\cos h - 1) + \cos x \sin h}{h}$$

$$= \lim_{h \to 0} \left(\sin x \cdot \frac{\cos h - 1}{h}\right) + \lim_{h \to 0} \left(\cos x \cdot \frac{\sin h}{h}\right)$$

$$= \sin x \cdot \lim_{h \to 0} \frac{\cos h - 1}{h} + \cos x \cdot \lim_{h \to 0} \frac{\sin h}{h} = \sin x \cdot 0 + \cos x \cdot 1 = \cos x.$$
Example 5a and Theorem 7, Section 2.4

EXAMPLE 1 We find derivatives of the sine function involving differences, products, and quotients.

(a)
$$y = x^2 - \sin x$$
: $\frac{dy}{dx} = 2x - \frac{d}{dx}(\sin x)$ Difference Rule $= 2x - \cos x$

(b)
$$y = e^x \sin x$$
:
$$\frac{dy}{dx} = e^x \frac{d}{dx} (\sin x) + \frac{d}{dx} (e^x) \sin x \qquad \text{Product Rule}$$
$$= e^x \cos x + e^x \sin x$$
$$= e^x (\cos x + \sin x)$$

(c)
$$y = \frac{\sin x}{x}$$
:
$$\frac{dy}{dx} = \frac{x \cdot \frac{d}{dx}(\sin x) - \sin x \cdot 1}{x^2}$$
 Quotient Rule
$$= \frac{x \cos x - \sin x}{x^2}$$

The derivative of the cosine function is the negative of the sine function:

$$\frac{d}{dx}(\cos x) = -\sin x.$$

EXAMPLE 2 We find derivatives of the cosine function in combinations with other functions.

(a)
$$y = 5e^x + \cos x$$
:

(b) $y = \sin x \cos x$:

$$(c) \quad y = \frac{\cos x}{1 - \sin x}:$$

Remainder

$$\tan x = \frac{\sin x}{\cos x}$$
, $\cot x = \frac{\cos x}{\sin x}$, $\sec x = \frac{1}{\cos x}$, and $\csc x = \frac{1}{\sin x}$

The derivatives of the other trigonometric functions:

$$\frac{d}{dx}(\tan x) = \sec^2 x$$

$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x \qquad \qquad \frac{d}{dx}(\csc x) = -\csc x \cot x$$

Examples

7. $f(x) = \sin x \tan x$

8. $g(x) = \csc x \cot x$

9. $y = (\sec x + \tan x)(\sec x - \tan x)$

10. $y = (\sin x + \cos x) \sec x$

17. $f(x) = x^3 \sin x \cos x$

 $22. \ s = \frac{\sin t}{1 - \cos t}$