Chapter 3. Differentiation

Tangents and the Derivative at a Point

DEFINITIONS The slope of the curve y = f(x) at the point $P(x_0, f(x_0))$ is the number (provided the limit exists).

The tangent line to the curve at P is the line through P with this slope.

EXAMPLE 1

Find the slope of the curve y = 1/x at any point $x = a \neq 0$. What is the slope at the point x = -1?

Definition 1

Definition 1

Notation: for the derivative of ((x) at Xo = f (xo) The derivative of a function f at a point X_0 , denoted

the secant slopes as $Q \rightarrow P$ from either side.

Summary

The following are all interpretations for the limit of the difference quotient

$$\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}.$$

- 1. The slope of the graph of y = f(x) at $x = x_0$
- 2. The slope of the tangent line to the curve y f(x) at $x x_0$
- 3. The rate of change of f(x) with respect to x at the $x = x_0$
- The derivative $f'(x_0)$ at $x = x_0$

Example

In Exercises 11–18, find the slope of the function's graph at the given point. Then find an equation for the line tangent to the graph there.

11.
$$f(x) = x^2 + 1$$
, $(2, 5)$ 12. $f(x) = x - 2x^2$, $(1, -1)$

(11)
$$m = \frac{1}{1} + \frac{1}{$$

Egn of tangent line y-yo= m(x-xo)

Egn of largest line
$$y-y_0=m(x-x_0)$$

to $f(x)$ at $x_0=z$ $y-y_0=m(x-x_0)$
 $y-y_0=m(x-x_0)$
 $y-y_0=m(x-x_0)$

The Derivative as a Function

$$\int f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}, = \text{degends on } x^h$$

DEFINITION The derivative of the function f(x) with respect to the variable x is the function f' whose value at x is $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}, = \text{depends on } x \text{ for } x$

Two forms for the difference quotient.

Derivative of f at x is $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

$$x i \Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{z \to x} \frac{f(z) - f(x)}{z = x}$$

slope of line to y=f(x)
of x=xo.
2=xth >> h=2-x

Alternative Formula for the Derivative

$$f'(x) = \lim_{x \to \infty} \frac{f(z) - f(x)}{z - x}.$$

EXAMPLE 2

(a) Find the derivative of
$$f(x) = \sqrt{x}$$
 for $x > 0$.
(b) Find the tangent line to the curve $y = \sqrt{x}$ at $x = 4$.

(c) $f(x) = \lim_{k \to 0} \frac{f(x) - f(x)}{k} = \lim_{k \to 0} \frac{f(x+k) - f(x)}{k}$

$$f(x) = (x \Rightarrow f'(x) = \frac{1}{2(x)}$$

W) To find the equ of the tangent line at the point (4,2): Slope = m= f(4) = 1 = 4

Notations

There are many ways to denote the derivative of a function y = f(x), where the independent variable is x and the dependent variable is y. Some common alternative notations for the derivative are

To indicate the value of a derivative at a specified number x = a, we use the notation

$$\underline{f'(a)} = \frac{dy}{dx}\Big|_{x=a} = \frac{df}{dx}\Big|_{x=a} = \frac{d}{dx}f(x)\Big|_{x=a}$$

Figure 3.7

Derivatives at endpoints of a closed interval are one-sided limits.

Differentiable on an Interval; One-Sided Derivatives

A function y = f(x) is differentiable on an open interval (finite or infinite) if it has derivative at each point of the interval. It is differentiable on a closed interval [a, b] is differentiable on the interior (a, b) and if the limits

$$\int_{a}^{1} (\alpha) = \lim_{h \to 0^{+}} \frac{f(a+h) - f(a)}{h}$$

Right-hand derivative at a

$$\int_{b\to 0}^{b} \frac{f(b+h)-f(b)}{h}$$

Left-hand derivative at b

exist at the endpoints (Figure 3.7).

EXAMPLE 4 Show that the function y = |x| is <u>differentiable</u> on $(-\infty, 0)$ and $(0, \infty)$ but has no derivative at x = 0.

Figure 3.8

The function |x - |x| is not differentiable at the origin where the graph has a "corner" (Example 4)

x=0 is not included

f(x)= |x| is not differentiable at x=0

Recall

Continuity at x=0 |x| = 0 = f(0) |x| = |x| = 0 |x| = |x| = 0

differationally: at x=0 101=0

Recall y=x

(Figure 3.8). There is no derivative at the origin because the one-sided derivatives differ there:

Right-hand derivative of
$$|x|$$
 at zero $=\lim_{h\to 0^+}\frac{|0+h|-|0|}{h}=\lim_{h\to 0^+}\frac{|h|}{h}$ $=\lim_{h\to 0^+}\frac{h}{h}$ $=\lim_{h\to 0^+}\frac{h}{h}$ $=\lim_{h\to 0^+}\frac{h}{h}$ $=\lim_{h\to 0^+}\frac{h}{h}$ $=\lim_{h\to 0^-}\frac{|0+h|-|0|}{h}=\lim_{h\to 0^-}\frac{|h|}{h}$ Left-hand derivative of $|x|$ at zero $=\lim_{h\to 0^-}\frac{|0+h|-|0|}{h}=\lim_{h\to 0^-}\frac{|h|}{h}$ $=\lim_{h\to 0^-}\frac{-h}{h}$ $=\lim_{h\to 0^-}\frac{-h}{h}$

Figure 3.9

The square root function is not differentiable at x = 0, where the graph of the function has a vertical tangent line.

When Does a Function *Not* Have a Derivative at a Point?

sides or approaches -∞ from both sides

(here, -∞)

one side and $-\infty$

from the other

Week 3 Sayfa 5

Differentiable Functions Are Continuous

A function is continuous at every point where it has a derivative.

THEOREM 1—Differentiability Implies Continuity x = c, then f is continuous at x = c.Fund if if has a derivative at f(x) = |x| f(x) = |x|

2 2 Differentiation Rules

Derivative of a Constant Function

If f has the constant value f(x) = c, then

 $\frac{df}{dx} = \frac{d}{dx}(c) = 0.$

1'(W= 11/2 L) = (1/2)

= 11/2 0 = (1/2)

The rule $\left(\frac{d}{dx}\right)\!(c)\!=\!0$ is another way to say that the values

of constant functions never change and that the slope of a horizontal line is zero at every point.

Power Rule (General Version)

(1x): x = power for.

If n is any real number, then

 $\frac{d}{dx}x^n = nx^{n-1},$

nek

for all x where the powers x^n and x^{n-1} are defined

EXAMPLE 1 Differentiate the following powers of x. (a) x^3 (b) $x^{2/3}$ (c) $x^{\sqrt{2}}$ (d) $\frac{1}{x^4}$ (e) $x^{-4/3}$ (f) $\sqrt{x^{2+\pi}}$ $y = \sqrt{\frac{2+\pi}{2}}$ $y = \sqrt{\frac{4x^{\frac{\pi}{2}}}{2}}$ $y = \sqrt{\frac{4x$

Derivative Constant Multiple Rule

If u is a differentiable function of x, and c is a constant, then

$$\frac{d}{dx}(\mathbf{c}u) = c\frac{du}{dx}$$

(b) Negative of a function

The derivative of the negative of a differentiable function u is the negative of the function's derivative. The Constant Multiple Rule with c = -1 gives

MM

$$\frac{d}{dx}(-u) = \frac{1}{dx}(-1 \cdot u) = -1 \cdot \frac{d}{dx}(u) = -\frac{du}{dx}.$$

Derivative Sum Rule

If u and v are differentiable functions of x, then their sum u + v is differentiable at every point where u and v are both differentiable. At such points,

$$\frac{d}{dx}(u+v) = \frac{du}{dx} + \frac{dv}{dx}$$

Find the derivative of the polynomial $y = x^3 + \frac{4}{3}x^2 - 5x + 1$. **EXAMPLE 3**

$$\frac{dy}{dx} = \frac{1}{3x} \left(x^{2} + \frac{4}{3x} x^{2} - 5x + 1 \right) = \frac{1}{3x} \left(x^{3} \right) + \frac{4}{3} \frac{1}{3x} \left(x^{2} \right) - 5 \frac{1}{6x} \left(x^{2} \right) + \frac{1}{3x} \left(x^{2} \right) = \frac{1}{3x} \left(x^{2} \right) + \frac{1}{3x} \left(x^{2}$$

Does the curve $y = x^4 - 2x^2 + 2$ have any horizontal tangents? If so, **EXAMPLE 4** where?

The curve in Example 4 and its horizontal tangents

vertical

$$\frac{d}{dx}(e^x) = e^x$$
exponential

Find an equation for a line that is tangent to the graph of $y = e^x$ and goes through the origin.

Derivative Product Rule

If u and v are differentiable at x, then so is their product uv, and

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}.$$

Find the derivative of (a)
$$y = \frac{1}{x}(x^2 + e^x)$$
,

$$(f \circ g) = f \circ g + f \circ$$

Derivative Quotient Rule

If u and v are differentiable at x and if $v(x) \neq 0$, then the quotient u/v is differ-

EXAMPLE 6

 $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{.2}.$

 $\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{g^2(x)}.$

$$\frac{dy}{dt} = \frac{f'g - fg'}{g^2}$$

$$y' = \frac{f'g - fy'}{g^2}$$

EXAMPLE 8 Find the derivative of (a)
$$y = \frac{t^2 - 1}{t^3 + 1}$$
, (b) $y = e^{-x}$.

a) $\frac{dy}{dt} = \frac{f'g - fg'}{g^2}$

$$= \frac{(t^3 + 1)^2}{g^2}$$

$$= \frac{(t^3 + 1)^2}{g^2}$$

$$= \frac{f'g - fg'}{g^2}$$

$$= \frac{f'g - fg'}{g^2}$$

$$= \frac{f'g - fg'}{g^2}$$

$$= \frac{f'g - fg'}{g^2}$$

$$= \frac{(e^t)^2}{g^2}$$

Second- and Higher-Order Derivatives

If y = f(x) is a differentiable function, then its derivative f'(x) is also a function. If f' is also differentiable, then we can differentiate f' to get a new function of x denoted by f''. So f'' = (f')'. The function f'' is called the **second derivative** of f because it is the derivative of the first derivative. It is written in several ways:

EXAMPLE 10

Fourth derivative: $\sqrt{y^{(4)}} = 0$.

Derivatives of Trigonometric Functions

6-baric triponametric focus
sinx
cosx
tan x

The derivative of the sine function is the cosine function:

 $\frac{d}{dx}(\sin x) = \cos x.$

Cotx secx (secx

 $\sin(x+h) = \sin x \cos h + \cos x \sin h.$

If $f(x) = \sin x$, then

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$$
Derivative definition
$$= \lim_{h \to 0} \frac{(\sin x \cos h + \cos x \sin h) - \sin x}{h} = \lim_{h \to 0} \frac{\sin x (\cos h - 1) + \cos x \sin h}{h}$$

$$= \lim_{h \to 0} \left(\sin x \cdot \frac{\cos h - 1}{h}\right) + \lim_{h \to 0} \left(\cos x \cdot \frac{\sin h}{h}\right)$$

$$= \sin x \cdot \lim_{h \to 0} \frac{\cos h - 1}{h} + \cos x \cdot \lim_{h \to 0} \frac{\sin h}{h} = \sin x \cdot 0 + \cos x \cdot 1 = \cos x.$$
Example 5a and Theorem 7, Section 2.4

EXAMPLE 1 We find derivatives of the sine function involving differences, products, and quotients.

(a)
$$y = x^2 - \sin x$$
: $\frac{dy}{dx} = 2x - \frac{d}{dx}(\sin x)$ Difference Rule
$$= 2x - \cos x$$
(b) $y = e^x \sin x$: $\frac{dy}{dx} = e^x \frac{d}{dx}(\sin x) + \frac{d}{dx}(e^x) \sin x$ Product Rule
$$= e^x \cos x + e^x \sin x$$

$$= e^x (\cos x + \sin x)$$
(c) $y = \frac{\sin x}{x}$: $\frac{dy}{dx} = \frac{x \cdot \frac{d}{dx}(\sin x) - \sin x \cdot 1}{x^2}$ Quotient Rule
$$= \frac{x \cos x - \sin x}{x^2}$$

$$= \frac{\cos x \cdot x - \sin x}{x^2}$$

The derivative of the cosine function is the negative of the sine function:

$$\frac{d}{dx}(\cos x) = -\sin x.$$

EXAMPLE 2 We find derivatives of the cosine function in combinations with other functions.

(a)
$$y = 5e^{x} + \cos x$$
: $\Rightarrow y' = 5e^{x} - \sinh x$

(b) $y = \sin x \cos x$: $\Rightarrow y' = \frac{1}{\cos x} \cdot \frac{g}{\cos x} + \frac{1}{\sinh x} \cdot \frac{g'}{-\sinh x}$

(c) $y = \frac{f}{1 - \sin x}$: $\Rightarrow y' = \frac{f' g - f g'}{g^{2}} = \frac{-\sinh x \cdot (1 - \sinh x)}{(1 - \sinh x)^{2}}$

Remainder

$$\tan x = \frac{\sin x}{\cos x}$$
, $\cot x = \frac{\cos x}{\sin x}$, $\sec x = \frac{1}{\cos x}$, and $\csc x = \frac{1}{\sin x}$

The derivatives of the other trigonometric functions:

$$\frac{d}{dx}(\tan x) = \sec^2 x \qquad \qquad \frac{d}{dx}(\cot x) = -\csc^2 x \qquad (30x) = \cos x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x \qquad \qquad \frac{d}{dx}(\csc x) = -\csc x \cot x \qquad (60x) = -31x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x \qquad \qquad \frac{d}{dx}(\csc x) = -\csc x \cot x \qquad (0) \times 1 = -12 =$$

Examples

7.
$$f(x) = \sin x \cdot \tan x$$
 8. $g(x) = \csc x \cot x$

7.
$$f(x) = \sin x \tan x$$
 8. $g(x) = \csc x \cot x$
9. $y = (\sec x + \tan x)(\sec x - \tan x)$
10. $y = (\sin x + \cos x) \sec x$ 17. $f(x) = x^3 \sin x \cos x$

$$22. \ s = \frac{\sin t}{1 - \cos t}$$

$$(7) \int_{-\infty}^{\infty} (x) = \cos x \cdot \tan x + \sin x \cdot \sec^{2} x$$

$$y' = fg + fg'$$

$$= \frac{(\sec x + \sec^2 x) \cdot (\sec x + \tan x) \cdot (\sec x + \tan x - \sec^2 x)}{f}$$

$$\frac{ds}{dt} = \frac{fg - fg'}{g^2} = \frac{\cot \cdot (1 - \cot t) - \sin t}{(1 - \cot t)^2}$$

$$\frac{ds}{dt} = \frac{(\cot \cdot (1 - \cot t) - \sin t)}{(1 - \cot t)^2}$$