Lecture

Saturday, October 17, 2020 10:30 PM

Chapter 3. Differentiation

The slope of the curve $y = f(x)$ at the point $P(x_0, f(x_0))$ is the **DEFINITIONS** number $m = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$

(provided the limit exists).

The tangent line to the curve at P is the line through P with this slope.

EXAMPLE 1

$$
\frac{c_1}{\sqrt{\frac{1}{\sqrt{\frac{1}{1-\frac{1}{x}}}} \cdot \frac{1}{1}}}
$$
\n
$$
\frac{c_2}{\sqrt{\frac{1}{1-\
$$

 h

 k_{90}

Find the slope of the curve $y = 1/x$ at any point $x = a \neq 0$. What is the slope at the point $x = -1$?

Definition 1

 $\rho_{\alpha_1\ldots\alpha_n}$ The derivative of a function f at a point x_0 , denoted λ

Definition 1

FIGURE 2.3 The tangent to the curve at P is the line through P whose slope is the limit of the secant slopes as $Q \rightarrow P$ from either side.

Summary

The following are all interpretations for the limit of the difference quotient

$$
\left(\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \right) \qquad \left(
$$

1. The slope of the graph of $y = f(x)$ at $x = x_0$

 $\frac{1}{\epsilon}$ 2. The slope of the tangent line to the curve $\frac{1}{\epsilon}r-f(x)$ at $x-x_0$

The rate of change of $f(x)$ with respect to x at the $x = x_0$ $\overline{3}$

The derivative $f'(x_0)$ at $x-x_0$ $\overline{4}$

Example

In Exercises $11-18$, find the slope of the function's graph at the given point. Then find an equation for the line tangent to the graph there.

11.
$$
f(x) = x^2 + 1
$$
, $(2, 5)$
\n12. $f(x) = x - 2x^2$, $(1, -1)$
\n $f(x) = \frac{x}{2}$, $f(x) = x - 2x^2$, $(1, -1)$
\n $f(x) = \frac{x}{2}$, $f(x) = \frac{x}{2}$, $f(x) = \frac{8}{2}$
\n $f(x) = \frac{8}{2}$, $f(x) = \frac{4}{2}$
\n $f(x) = \frac{1}{2}$
\n $f(x) = \frac{8}{2}$, $f(x) = \frac{4}{2}$
\n $f(x) = \frac{1}{2}$
\n $f(x) = \frac{8}{2}$, $f(x) = \frac{4}{2}$
\n $f(x) = \frac{1}{2}$
\n $f(x) = \frac{8}{2}$, $f(x) = \frac{4}{2}$
\n $f(x) = \frac{1}{2}$
\n $f(x) = \frac{8}{2}$, $f(x) = \frac{4}{2}$
\n $f(x) = \frac{1}{2}$

Week 3 Sayfa 2

Eq. of tangent line

\n6 (1) at
$$
x_i^2z = \frac{y - y_0}{\sqrt{1 - 5}} = \frac{y - y_0}{\sqrt{1 - 5}}
$$

\n8 (1) $\frac{y_0}{\sqrt{1 - 5}} = \frac{y_0 - y_0}{\sqrt{1 - 5}}$

3.2 The Derivative of the function
\n
$$
\frac{\text{Int } \{f(x) = 0\}}{\text{Int } \{f(x) = 0\}} = \frac{\text{Int } \{f(x) = 0\}}{\text{Int }
$$

$$
\mathcal{L} = \mathcal{L} \mathcal{L} = \mathcal{L} \mathcal{L} = \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} = \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} = \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} = \mathcal{L} \
$$

$$
y = m (x-x_0)
$$

$$
y = m (x-x_0)
$$

Notations

There are many ways to denote the derivative of a function $y = f(x)$, where the independent variable is x and the dependent variable is y . Some common alternative notations for the derivative are

$$
\oint_C \mathbf{r} \cdot \mathbf{r} \cdot d\mathbf{r} \cdot d\math
$$

To indicate the value of a derivative at a specified number $\sqrt{x} = a$, we use the notation

$$
\frac{f'(a)}{f'(a)} = \frac{dy}{dx}\bigg|_{x=a} = \frac{df}{dx}\bigg|_{x=a} = \frac{d}{dx}f(x)\bigg|_{x=a}.
$$

Figure 3.7

Derivatives at endpoints of a closed interval are one-sided limits

Differentiable on an Interval; One-Sided Derivatives

A function $y = f(x)$ is differentiable on an open interval (finite or infinite) if it has derivative at each point of the interval. It is differentiable on a closed interval $[a, b]$ is differentiable on the interior (a, b) and if the limits

$$
\int_{h \to 0}^{f(a)} f(a+h) = f(a)
$$

ht-hand derivative at a t-hand derivative at b

exist at the endpoints (Figure 3.7).

EXAMPLE 4 Show that the function $y = |x|$ is differentiable on $(-\infty, 0)$ and $(0, \infty)$ but has no derivative at $x = 0$.

Figure 3.8

The function $y = |x|$ is not differentiable at the origin where the graph has a "corner" (Example 4).

$$
x=0
$$
 in of included
\n $f(x)=|x|$ is not distributed at x=0
\n
$$
\frac{(\text{continuity})}{\sum_{x\to 0} d(x)=x} = f(0)
$$
\n $x\to 0$
\n $f(x)=x$ and $x=0$
\n $f(x)=x$ and $a+x$ or $f(x)=x$
\n $f(x)=x$ and $a+x$ or $f(x)=x$
\n $f(x)=x$ and $a+x$ or $f(x)=x$
\n $f(x)=x$ and $f(x)=0$

$$
\frac{f(x) = k_1}{\frac{1}{x} + k_1} = \frac{1}{x}
$$
\n
$$
\frac{f(x) = k_1}{x} = \frac{1}{x}
$$
\n<

(Figure 3.8). There is no derivative at the origin because the one-sided derivatives differ there:

Right-hand derivative of
$$
|x|
$$
 at zero $=$ $\lim_{h \to 0^+} \frac{|0+h| - |0|}{h} = \lim_{h \to 0^+} \frac{|h|}{h}$
\n $= \lim_{h \to 0^+} \frac{h}{h}$ $|h| = h$ when $h > 0$
\n $= \lim_{h \to 0^+} 1 = 1$
\nLeft-hand derivative of $|x|$ at zero $= \lim_{h \to 0^-} \frac{|0+h| - |0|}{h} = \lim_{h \to 0^-} \frac{|h|}{h}$
\n $= \lim_{h \to 0^-} \frac{-h}{h}$ $|h| = -h$ when $h < 0$
\n $= \lim_{h \to 0^-} -1 = -1$.

Figure 3.9

Differentiable Functions Are Continuous

A function is continuous at every point where it has a derivative.

٠

(b) Negative of a function

The derivative of the negative of a differentiable function u is the negative of the function's derivative. The Constant Multiple Rule with $c = -1$ gives

$$
\underbrace{\frac{d(x)}{dx}}_{}
$$
\n
$$
\frac{d}{dx}(-u) = \underbrace{\frac{d}{dx}(-1 \cdot u)}_{x} = -1 \cdot \frac{d}{dx}(u) = -\frac{du}{dx}.
$$

Derivative Sum Rule

If u and v are differentiable functions of x, then their sum $u + v$ is differentiable at every point where u and v are both differentiable. At such points,

$$
\frac{d}{dx}(u+v) = \frac{du}{dx} + \frac{dv}{dx}
$$

EXAMPLE 3 Find the derivative of the polynomial
$$
y = x^3 + \frac{4}{3}x^2 - 5x + 1
$$
.
\n
$$
\frac{dy}{dx} = \frac{1}{\omega} \left(\frac{x^3 + \frac{9}{3}x^2 - 5x + 1}{x^2 + \frac{9}{3}x^2 - 5x + 1} \right) = \frac{1}{\omega} \left(x^3 + \frac{4}{3} \frac{1}{x^3} \right) + \frac{4}{3} \frac{1}{\omega} \left(x^3 - \frac{5}{6} \frac{1}{x} \right) + \frac{1}{3} \frac{1}{x^2} \left(x \right) + \frac{1}{\omega} \left(x \right)
$$
\n
$$
= 3x^2 + \frac{4}{3} \frac{2x}{2x} - 5 \frac{1}{3} + 0
$$
\nEXAMPLE 4 Does the curve $y = x^4 - 2x^2 + \frac{2}{3}$ have any horizontal tangents? If so,
\nwhere?
\nThe curve in Example 4 and its horizontal tangents.
\n
$$
y = x^4 - 2x^2 + 2
$$
\n
$$
y' = 4x^2 - 4x = 0
$$
\n
$$
y'' = 4x^2 - 4x = 0
$$
\n
$$
y'' = 4x^2 - 4x = 0
$$
\n
$$
y'' = \frac{1}{2}x^2 - 4x = 0
$$
\n
$$
y'' = \frac{1}{2}x^2 - 4x = 0
$$
\n
$$
y'' = \frac{1}{2}x^2 - 4x = 0
$$
\n
$$
y'' = \frac{1}{2}x^2 - 4x = 0
$$
\n
$$
y'' = \frac{1}{2}x^2 - 4x = 0
$$
\n
$$
y'' = \frac{1}{2}x^2 - 4x = 0
$$
\n
$$
y'' = \frac{1}{2}x^2 - 4x = 0
$$
\n
$$
y'' = \frac{1}{2}x^2 - 4x = 0
$$
\n
$$
y''' = \frac{1}{2}x^2 - 4x = 0
$$
\n
$$
y''' = \frac{1}{2}x^2 - 4x = 0
$$
\n
$$
y''' = \frac{1}{2}x^2 - 4x = 0
$$

Derivative of the Natural Exponential Function

$$
\frac{d}{dx}(e^x) = e^x
$$
\n
$$
e^x \sqrt{\frac{d}{dx} \int_{\text{nc.}}} = \frac{e^x}{\sqrt{\frac{d}{dx} \int_{\text{nc.}}} = \frac{e^x}{\sqrt{\frac
$$

EXAMPLE 5 Find an equation for a line that is tangent to the graph of $y = e^x$ and goes through the origin. $-y' = e^{x\psi}$

Second- and Higher-Order Derivatives

If $y = f(x)$ is a differentiable function, then its derivative $f'(x)$ is also a function. If f' is also differentiable, then we can differentiate f' to get a new function of x denoted by f'' .
So $f'' = (f')'$. The function

$$
\oint_{0}^{1} = \oint_{0}^{1} \int_{0}^{1} \int_{0}^{1
$$

37.
$$
y = \sqrt[3]{x^2} - x^e
$$

\n23. $f(s) = \frac{\sqrt{s} - 1}{\sqrt{s} + 1} +$
\n34. $y = x^{-3/5} + \pi^{3/2}$
\n48. $u = \frac{(x^2 + x)(x^2 - x + 1)}{x^4}$
\n49. $u' = \frac{\sqrt{19} - \sqrt{9}}{9^2} = \frac{3x + 1}{(x^2 + x)(x^2 - x + 1) + (x^2 + x)(x^2 - x + 1)} = \frac{9}{(x^2 + x)(x^2 - x + 1)}$

$$
\sin(x + h) = \sin x \cos h + \cos x \sin h.
$$

If
$$
f(x) = \sin x
$$
, then

$$
f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\sin (x+h) - \sin x}{h}
$$
 Derivative definition
\n
$$
= \lim_{h \to 0} \frac{(\sin x \cos h + \cos x \sin h) - \sin x}{h} = \lim_{h \to 0} \frac{\sin x (\cos h - 1) + \cos x \sin h}{h}
$$

\n
$$
= \lim_{h \to 0} \left(\sin x \cdot \frac{\cos h - 1}{h}\right) + \lim_{h \to 0} \left(\cos x \cdot \frac{\sin h}{h}\right)
$$

\n
$$
= \sin x \cdot \lim_{h \to 0} \frac{\cos h - 1}{h} + \cos x \cdot \lim_{h \to 0} \frac{\sin h}{h} = \sin x \cdot 0 + \cos x \cdot 1 = \cos x.
$$
Example 5a and
Theorem 7, Section 2.4

EXAMPLE 1 We find derivatives of the sine function involving differences, products, and quotients.

(a)
$$
y = x^2 - \sin x
$$
:
\n
$$
\int \int \frac{1}{2} dx = 2x - \frac{d}{dx} (\sin x)
$$
\n
$$
\int \int \frac{1}{2} dx = 2x - \cos x
$$
\n(b) $y = e^x \sin x$:
\n
$$
\int \frac{dx}{dx} = e^x \frac{d}{dx} (\sin x) + \frac{d}{dx} (e^x) \sin x
$$
\n
$$
\int \frac{dx}{dx} = e^x \cos x + e^x \sin x
$$
\n
$$
= e^x (\cos x + \sin x)
$$
\n(c) $y = \frac{\sin x}{x}$:
\n
$$
\int \frac{dy}{dx} = \frac{x \cdot \frac{d}{dx} (\sin x) - \sin x \cdot 1}{x^2}
$$
\n
$$
\int \frac{dy}{dx} = \frac{x \cdot \frac{d}{dx} (\sin x) - \sin x \cdot 1}{x^2}
$$
\n
$$
\int \frac{dy}{dx} = \frac{1}{x^2} \int \frac{dy}{dx} = \frac{x \cdot \frac{d}{dx} (\sin x) - \sin x \cdot 1}{x^2}
$$
\n
$$
\int \frac{dy}{dx} = \frac{1}{x^2} \int \frac{dy}{dx} = \frac{x \cdot \frac{d}{dx} (\sin x) - \sin x \cdot 1}{x^2}
$$
\n
$$
\int \frac{dy}{dx} = \frac{1}{x^2} \int \frac{dy}{dx} = \frac{x \cdot \frac{d}{dx} (\sin x) - \sin x \cdot 1}{x^2}
$$
\n
$$
\int \frac{dy}{dx} = \frac{1}{x^2} \int \frac{dy}{dx} = \frac{1
$$

The derivative of the cosine function is the negative of the sine function:
\n
$$
\int \frac{d}{dx}(\cos x) = -\sin x.
$$

EXAMPLE 2 We find derivatives of the cosine function in combinations with other functions.

(a)
$$
y = 5e^x + \cos x
$$
: $\Rightarrow y^1 = 5e^x - 5\sqrt{x}$
\n
$$
\frac{d}{dx}(x^1) = e^x
$$
\n(b) $y = \sin x \cos x$:
\n
$$
\frac{d}{dx}(\cos x) = \frac{1}{2}e^x
$$

Remainder

$$
\tan x = \frac{\sin x}{\cos x}, \qquad \cot x = \frac{\cos x}{\sin x}, \qquad \sec x = \frac{1}{\cos x}, \qquad \text{and} \qquad \csc x = \frac{1}{\sin x}
$$
\nThe derivatives of the other trigonometric functions:

\n
$$
\frac{d}{dx}(\tan x) = \sec^2 x \qquad \qquad \frac{d}{dx}(\cot x) = -\csc^2 x \qquad \qquad \left(\frac{\sin x}{\cos x}\right)^{\frac{1}{2}} = \cos x
$$
\n
$$
\frac{d}{dx}(\sec x) = \sec x \tan x \qquad \qquad \frac{d}{dx}(\csc x) = -\csc x \cot x \qquad \left(\frac{\cos x}{\cos x}\right)^{\frac{1}{2}} = \cosh x
$$

Examples

7.
$$
f(x) = \sin x \tan x
$$

\n8. $g(x) = \csc x \cot x$
\n9. $y = (\sec x + \tan x)(\sec x - \tan x)$
\n10. $y = (\sin x + \cos x)\sec x$
\n
\n22. $s = \frac{\sin t}{1 - \cos t}$
\n
\n(7) $\int |x| = \cos t$
\n(9) $y' = \int g + \int g'$
\n $= \frac{\int g + \int g'}{\sec x \tan x + \sec^2 x}$, $(\sec x - \tan x) + (\sec x + \tan x)$, $(\sec x + \tan x - \sec^2 x)$

Ä

(9)
$$
y' = \frac{1}{3}y + \frac{1}{3}y'
$$

\n
$$
= \frac{3}{(8ex \tan x + sec^{2}x)} \cdot (sec x - tan x) + (sec x + tan x) \cdot (sec x + tan x - sec^{2}x)
$$
\n
$$
= \frac{1}{2}y + \frac{1}{2}y'
$$
\n
$$
= \frac{1}{2}y - \frac{1}{3}y' = \frac{cot(1 - cot) - sin(1 - cot)x}{(1 - cot)x}
$$