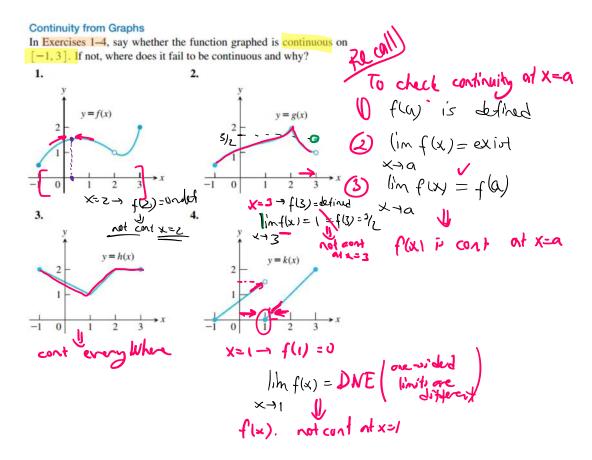
Problem Solving_sec03

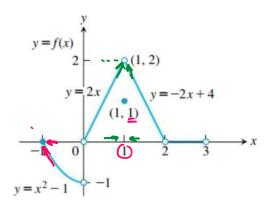
11 Ekim 2020 Pazar 19:14



Exercises 5–10 refer to the function

$$f(x) = \begin{cases} x^2 - 1, & -1 \le x < 0\\ 2x, & 0 < x < 1\\ 1, & x = 1\\ -2x + 4, & 1 < x < 2\\ 0, & 2 < x < 3 \end{cases}$$

graphed in the accompanying figure.



The graph for Exercises 5-10.

- f(-v) = 0 5. a. Does f(-1) exist? Yes
 - **b.** Does $\lim_{x\to -1^+} f(x)$ exist? Is $\lim_{x\to -1^+} f(x) = f(-1)?$

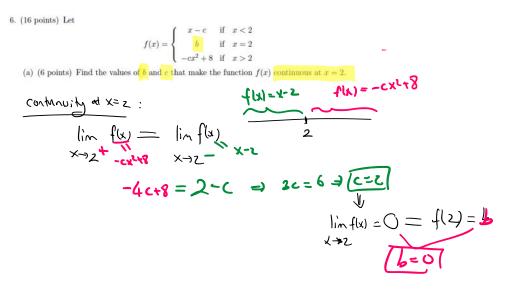
 - **d.** Is f continuous at x = -1?
- 6. a. Does f(1) exist? Yes f(1) = 1
 - **b.** Does $\lim_{x \to 1} f(x)$ exist? We $\lim_{x \to 1} f(x) = 2$ c. Does $\lim_{x\to 1} f(x) = f(1)$? d. Is f continuous at x = 1? No
- 7. a. Is f defined at x = 2? (Look at the definition of f.) $\rightarrow f(z) = u def$ b. Is f continuous at $x = 2? \rightarrow f$ cont at x = 2?
- 8. At what values of x is f continuous?
- 9. What value should be assigned to f(2) to make the extended function continuous at x = 2?
- 10. To what new value should f(1) be changed to remove the discontinuity?

Limits Involving Trigonometric Functions

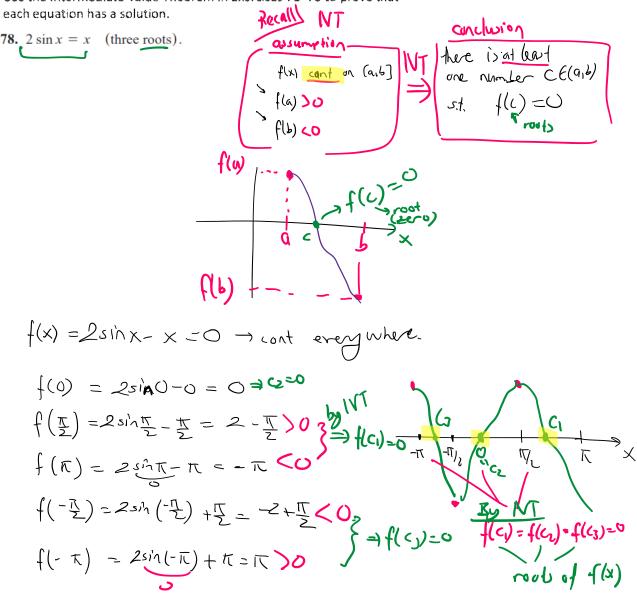
Find the limits in Exercises 31-38. Are the functions continuous at the point being approached?

31.
$$\lim_{x \to \underline{\pi}} \sin(x - \sin x)$$
32.
$$\lim_{t \to 0} \sin\left(\frac{\pi}{2}\cos(\tan t)\right)$$
33.
$$\lim_{y \to 1} \sec(y \sec^2 y - \tan^2 y - 1)$$
34.
$$\lim_{x \to 0} \tan\left(\frac{\pi}{4}\cos(\sin x^{1/3})\right)$$
35.
$$\lim_{x \to 0^+} \cos\left(\frac{\pi}{\sqrt{19 - 3 \sec 2t}}\right)$$
36.
$$\lim_{x \to \pi/6} \sqrt{\csc^2 x + 5\sqrt{3} \tan x}$$
37.
$$\lim_{x \to 0^+} \sin\left(\frac{\pi}{2}e^{\sqrt{x}}\right)$$
38.
$$\lim_{x \to 1} \cos^{-1}(\ln \sqrt{x})$$
(3)
$$\int_{1/\infty}^{1/\infty} \sin(\frac{\pi}{2}e^{\sqrt{x}})$$
38.
$$\lim_{x \to 1} \cos^{-1}(\ln \sqrt{x})$$
(4)
$$\int_{1/\infty}^{1/\infty} \left(\frac{\pi}{\sin}(x - 5hx)\right) = -\sin((\pi - \sin \pi x)) = 0$$
(4)
$$\int_{1/\infty}^{1/\infty} \left(\frac{\pi}{\sin}(x - 5hx)\right) = -\sin((\pi - \sin \pi x)) = 0$$
(5)
$$\int_{1/\infty}^{1/\infty} \left(\frac{\pi}{\cos}(x - 5hx)\right) = -\sin((\pi - \sin \pi x)) = 0$$
(6)
$$\int_{1/\infty}^{1/\infty} \left(\frac{\pi}{\sin}(x - 5hx)\right) = -\sin((\pi - \sin \pi x)) = 0$$
(7)
$$\int_{1/\infty}^{1/\infty} \left(\frac{\pi}{\sin}(x - 5hx)\right) = -\sin((\pi - \sin \pi x)) = 0$$
(8)
$$\int_{1/\infty}^{1/\infty} \left(\frac{\pi}{\sin}(x - 5hx)\right) = -\sin((\pi - \sin \pi x)) = 0$$
(7)
$$\int_{1/\infty}^{1/\infty} \left(\frac{\pi}{\sin}(x - 5hx)\right) = -\sin((\pi - \sin \pi x)) = 0$$
(8)
$$\int_{1/\infty}^{1/\infty} \left(\frac{\pi}{\sin}(x - 5hx)\right) = -\sin((\pi - \sin \pi x)) = 0$$
(7)
$$\int_{1/\infty}^{1/\infty} \left(\frac{\pi}{\sin}(x - 5hx)\right) = -\sin((\pi - \sin \pi x)) = 0$$
(8)
$$\int_{1/\infty}^{1/\infty} \left(\frac{\pi}{\sin}(x - 5hx)\right) = -\sin((\pi - \sin \pi x)) = 0$$
(7)
$$\int_{1/\infty}^{1/\infty} \left(\frac{\pi}{\sin}(x - 5hx)\right) = -\sin((\pi - \sin \pi x)) = 0$$
(8)
$$\int_{1/\infty}^{1/\infty} \left(\frac{\pi}{\sin}(x - 5hx)\right) = -\sin((\pi - \sin \pi x)) = 0$$
(8)
$$\int_{1/\infty}^{1/\infty} \left(\frac{\pi}{\sin}(x - 5hx)\right) = -\sin((\pi - \sin \pi x)) = 0$$
(8)
$$\int_{1/\infty}^{1/\infty} \left(\frac{\pi}{\sin}(x - 5hx)\right) = -\sin((\pi - \sin \pi x)) = 0$$
(8)
$$\int_{1/\infty}^{1/\infty} \left(\frac{\pi}{\sin}(x - 5hx)\right) = -\sin((\pi - \sin \pi x)) = 0$$
(8)
$$\int_{1/\infty}^{1/\infty} \left(\frac{\pi}{\sin}(x - 5hx)\right) = -\sin((\pi - \sin \pi x)) = 0$$
(8)
$$\int_{1/\infty}^{1/\infty} \left(\frac{\pi}{\sin}(x - 5hx)\right) = -\sin((\pi - \sin \pi x)) = 0$$
(8)
$$\int_{1/\infty}^{1/\infty} \left(\frac{\pi}{\sin}(x - 5hx)\right) = -\sin((\pi - \sin \pi x)) = 0$$
(8)
$$\int_{1/\infty}^{1/\infty} \left(\frac{\pi}{\sin}(x - 5hx)\right) = -\sin((\pi - \sin \pi x)) = 0$$
(8)
$$\int_{1/\infty}^{1/\infty} \left(\frac{\pi}{\sin}(x - 5hx)\right) = -\sin((\pi - \sin \pi x)) = 0$$
(8)
$$\int_{1/\infty}^{1/\infty} \left(\frac{\pi}{\sin}(x - 5hx)\right) = -\sin((\pi - \sin \pi x)) = 0$$
(8)
$$\int_{1/\infty}^{1/\infty} \left(\frac{\pi}{\sin}(x - 5hx)\right) = -\sin((\pi - \sin \pi x)) = 0$$
(8)
$$\int_{1/\infty}^{1/\infty} \left(\frac{\pi}{\sin}(x - 5hx)\right) = -\sin((\pi - \sin \pi x)) = 0$$
(8)
$$\int_{1/\infty}^{1/\infty} \left(\frac{\pi}{\sin}(x - 5hx)\right) = -\sin((\pi - \sin \pi x)) = 0$$
(8)
$$\int_{1/\infty}^{1/\infty} \left(\frac{\pi}{\sin}(x - 5hx)\right) = -\sin((\pi - \sin \pi x)) = 0$$
(8)
$$\int_{1/\infty}^{1/\infty} \left(\frac{\pi}{\sin}(x - 5hx)\right) = -\sin((\pi - \sin \pi x)) = 0$$
(8)
$$\int_{1/\infty}^{1/\infty} \left(\frac{\pi}{\sin}(x - 5hx)\right)$$

Past Exam Question



Use the Intermediate Value Theorem in Exercises 71-78 to prove that



2.6 Limits involving infiny, Asymtotes of graphs

Limits of Rational Functions In Exercises 13-22, find the limit of each rational function (a) as $x \to \infty$ and (b) as $x \to -\infty$ **17.** $h(x) = \frac{7x^3}{x^3 - 3x^2 + 6x}$ **18.** $h(x) = \frac{9x^4 + x}{2x^4 + 5x^2 - x + 6x^2}$ 17. $h(x) = x^3 - 3x^2 + 6x$ 19. $g(x) = \frac{10x^5 + x^4 + 31}{x^6}$ 20. $g(x) = \frac{x^3 + 7x^2 - 2}{x^2 - x + 1}$ $\begin{array}{c} (f) \\ x \rightarrow \infty \end{array} \begin{array}{c} 1 \\ x \rightarrow \infty \end{array} \end{array} = \begin{array}{c} 1 \\ x \rightarrow \infty \end{array} = \begin{array}{c} 1 \\ x \rightarrow 0 \end{array} = \begin{array}{c} 1 \end{array} = \begin{array}{c} 1 \\ x \rightarrow 0 \end{array} = \begin{array}{c} 1 \end{array} = \begin{array}{c} 1 \\ x \rightarrow 0 \end{array} = \begin{array}{c} 1 \end{array}$ $\sum \left(10 + \frac{1}{x} + \frac{31}{x^5} \right)$ (19) $\lim_{x \to 1} \frac{10x^5 + x^4 + 31}{10x^5 + x^4 + 31} = \lim_{x \to 1} \frac{10x^5 + x^4 + 31}{10x^5 + x$ = lin <u>lu</u> = ()

$$(19) \lim_{X \to \infty} \frac{10x^{5} + x^{4} + 31}{x^{6}} = \lim_{X \to \infty} \frac{1}{x^{6}} \frac{10x^{1} + x^{4} + 31}{x^{6}} = \lim_{X \to \infty} \frac{1}{x^{6}} \frac{10x^{1} + x^{4} + 31}{x^{6}} = \lim_{X \to \infty} \frac{1}{x^{6}} \frac{10x^{1} + x^{4} + 31}{x^{6}} = \lim_{X \to \infty} \frac{1}{x^{1}} \frac{10x^{1} + x^{1}}{x^{1}} = 1$$

Limits as $x \to \infty$ or $x \to -\infty$

The process by which we determine limits of rational functions applies equally well to ratios containing noninteger or negative powers of x: Divide numerator and denominator by the highest power of x in the denominator and proceed from there. Find the limits in Exercises 23–36.

$$\Rightarrow 33. \lim_{x \to \infty} \frac{\sqrt{x^2 + 1}}{x + 1} = \lim_{x \to \infty} \frac{\sqrt{x^2 + 1}}{x(1 + \frac{1}{x})} = \lim_{x \to \infty} \frac{\sqrt{x^2 + 1}}{x(1 + \frac$$

Finding Limits of Differences When
$$x \to \pm \infty$$

Find the limits in Exercises 86-92. (*Hint*: Try multiplying and dividing
by the conjugate.)
86. $\lim_{n \to \infty} (\sqrt{x^2 + 25} - \sqrt{x^2 - 1})$
88. $\lim_{n \to \infty} (\sqrt{x^2 + 3} + x)$
89. $\lim_{n \to \infty} (\sqrt{x^2 + 3} + x)$
89. $\lim_{n \to \infty} (\sqrt{x^2 + 3} - \sqrt{x^2 - 2x})$
91. $\lim_{n \to \infty} (\sqrt{x^2 + x} - \sqrt{x^2 - x})$
92. $\lim_{n \to \infty} (\sqrt{x^2 + x} - \sqrt{x^2 - x})$
93. $\lim_{n \to \infty} (\sqrt{x^2 + x} - \sqrt{x^2 - x})$
94. $\lim_{n \to \infty} (\sqrt{x^2 + x} - \sqrt{x^2 - x})$
95. $\lim_{n \to \infty} (\sqrt{x^2 + x} - \sqrt{x^2 - x})$
96. $\lim_{n \to \infty} (\sqrt{x^2 + x} - \sqrt{x^2 - x})$
97. $\lim_{n \to \infty} (\sqrt{x^2 + x} - \sqrt{x^2 - x})$
98. $\lim_{n \to \infty} (\sqrt{x^2 + x} - \sqrt{x^2 - x})$
99. $\lim_{n \to \infty} (\sqrt{x^2 + x} - \sqrt{x^2 - x})$
90. $\lim_{n \to \infty} (\sqrt{x^2 + x} - \sqrt{x^2 - x})$
91. $\lim_{n \to \infty} (\sqrt{x^2 + x} - \sqrt{x^2 - x})$
92. $\lim_{n \to \infty} (\sqrt{x^2 + x} - \sqrt{x^2 - x})$
93. $\lim_{n \to \infty} (\sqrt{x^2 + x} - \sqrt{x^2 - x})$
94. $\lim_{n \to \infty} (\sqrt{x^2 + x} - \sqrt{x^2 - x})$
95. $\lim_{n \to \infty} (\sqrt{x^2 + x} - \sqrt{x^2 - x})$
96. $\lim_{n \to \infty} (\sqrt{x^2 + x} - \sqrt{x^2 - x})$
97. $\lim_{n \to \infty} (\sqrt{x^2 + x} - \sqrt{x^2 - x})$
98. $\lim_{n \to \infty} (\sqrt{x^2 + x} - \sqrt{x^2 - x})$
99. $\lim_{n \to \infty} (\sqrt{x^2 + x} - \sqrt{x^2 - x})$
90. $\lim_{n \to \infty} (\sqrt{x^2 + x} - \sqrt{x^2 - x})$
91. $\lim_{n \to \infty} (\sqrt{x^2 + x} - \sqrt{x^2 - x})$
92. $\lim_{n \to \infty} (\sqrt{x^2 + x} - \sqrt{x^2 - x})$
93. $\lim_{n \to \infty} (\sqrt{x^2 + x} - \sqrt{x^2 - x})$
94. $\sum_{n \to \infty} (\sqrt{x^2 + x^2 - x})$
95. $\sum_{n \to \infty} (\sqrt{x^2 + x^2 - x})$
96. $\sum_{n \to \infty} (\sqrt{x^2 + x^2 - x})$
97. $\sum_{n \to \infty} (\sqrt{x^2 + x^2 - x})$
98. $\sum_{n \to \infty} (\sqrt{x^2 + x^2 - x})$
99. $\sum_{n \to \infty} (\sqrt{x^2 + x^2 - x})$
90. $\sum_{n \to \infty} (\sqrt{x^2 + x^2 - x^2 - x^2})$
90. $\sum_{n \to \infty} (\sqrt{x^2 + x^2 - x^2 - x^2})$
90. $\sum_{n \to \infty} (\sqrt{x^2 + x^2 - x^2 - x^2})$
90. $\sum_{n \to \infty} (\sqrt{x^2 - x^2 - x^2 - x^2})$
90. $\sum_{n \to \infty} (\sqrt{x^2 - x^2 - x^2 - x^2 - x^2})$
90. $\sum_{n \to \infty} (\sqrt{x^2 - x^2 - x^2 - x^2 - x^2})$
90. $\sum_{n \to \infty} (\sqrt{x^2 - x^2 - x^2$

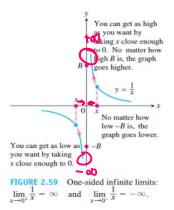
$$= \lim_{x \to -\infty} \frac{4x^2 - 4x^2 + 3x + 2}{2x - 14x^2 + 3x - 2} = \lim_{x \to -\infty} \frac{x(-3 + \frac{2}{x})}{2x - 14x^2 + 3x - 2}$$

$$= \lim_{x \to -\infty} \frac{2x - 1}{x(4 + \frac{3}{x} - \frac{2}{x^2})} = \lim_{x \to -\infty} \frac{x(-3 + \frac{2}{x})}{x(-3 + \frac{2}{x^2})}$$

$$= \lim_{x \to -\infty} \frac{x(-3 + \frac{2}{x})}{x(-3 + \frac{2}{x^2})}$$

$$= \lim_{x \to -\infty} \frac{x(-3 + \frac{2}{x})}{x(-3 + \frac{2}{x^2})}$$

RECALL: Infinite Limits

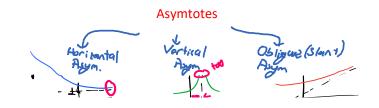


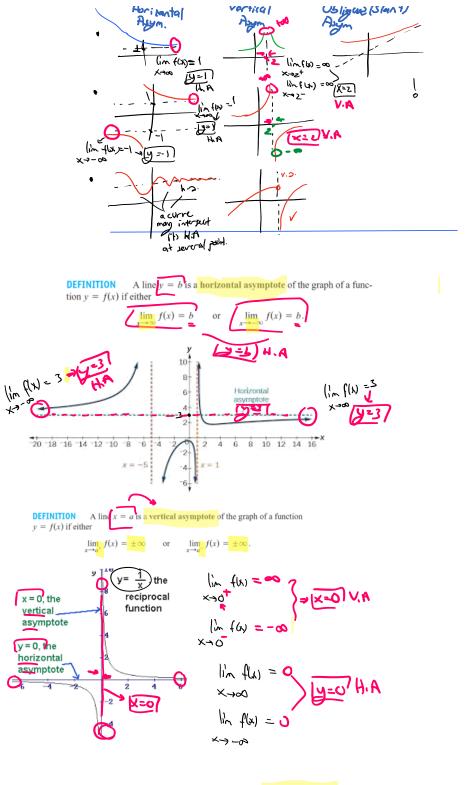
Let us look again at the function f(x) = 1/x. As $x \to 0^+$, the values of f grow without bound, eventually reaching and surpassing every positive real number. That is, given any positive real number B, however large, the values of f become larger still (Figure 2.59). Thus, f has no limit as $x \to 0^+$. It is nevertheless convenient to describe the behavior of fby saying that f(x) approaches ∞ as $x \to 0^+$. We write

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{1}{x} = \infty.$$

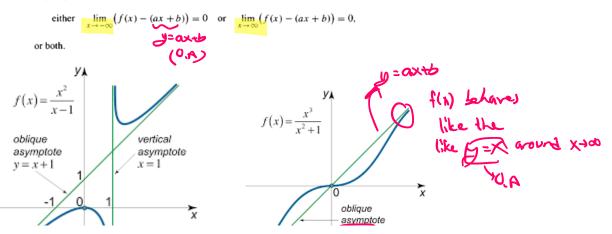
In writing this equation, we are *not* saying that the limit exists. Nor are we saying that there is a real number ∞ , for there is no such number. Rather, we are saying that $\lim_{x\to 0^+} (1/x)$ does not exist because 1/x becomes arbitrarily large and positive as $x \to 0^+$.

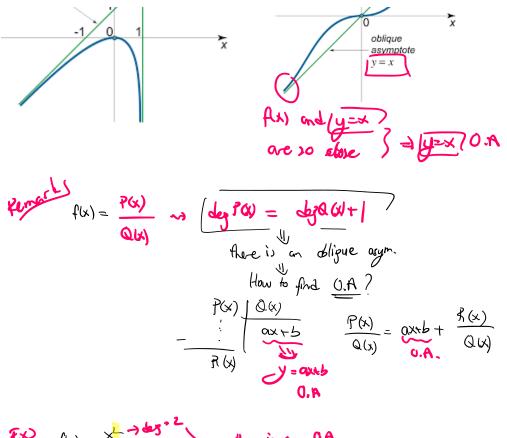
53.
$$\lim_{x \to 2^{+}} \frac{1}{x^{2} - 4} \text{ as}$$
a. $x \to 2^{+}$
b. $x \to 2^{-}$
c. $x \to -2^{+}$
d. $x \to -2^{-}$
d.





The straight line y = ax + b (where $a \neq 0$) is an oblique asymptote of the graph of y = f(x) if





• V.A
$$f(x) = \frac{x}{x-1}$$

's search for the server of the densen: $x-1=0$
 $(x=1)$
 $(x=1)$

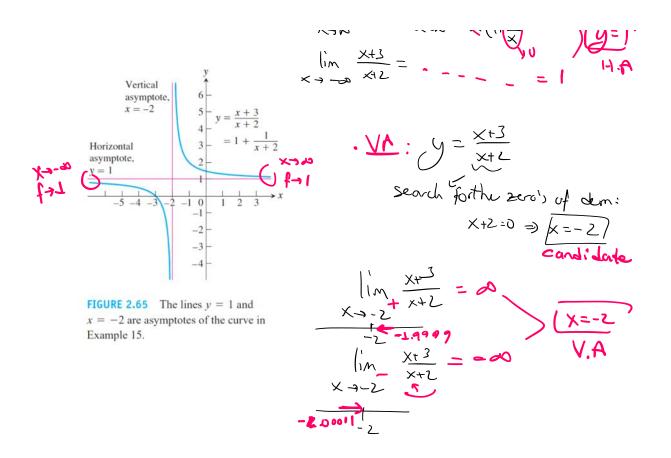
EXAMPLE 15 Find the horizontal and vertical asymptotes of the curve

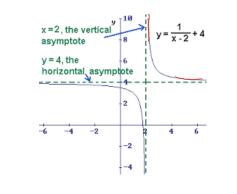
$$y = \frac{x+3}{x+2}, \rightarrow 0 \quad 0. \text{ A}$$

$$\frac{H.A}{x+2} = \lim_{X \to \infty} \frac{\chi(1+\frac{3}{x+2})}{\chi(1+\frac{3}{x+2})} = \lim_{X \to \infty} \frac{\chi(1+\frac{$$

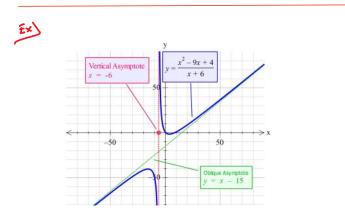
~

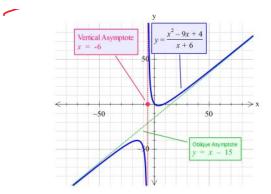
A JY

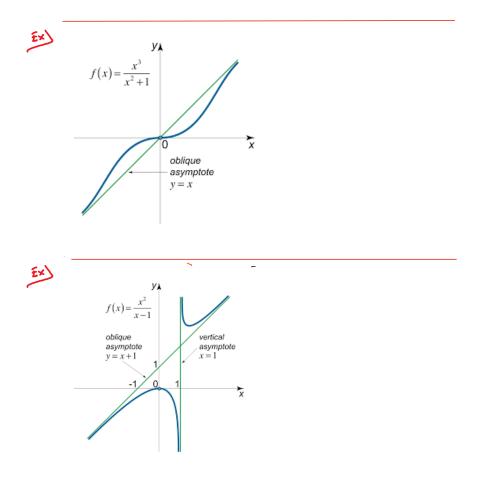




Ex







.

Find the oblique asymptote of graphs of the rational functions

99.
$$y = \frac{x^2}{x-1}$$

100. $y = \frac{x^2+1}{x-1}$
101. $y = \frac{x^2-4}{x-1}$
102. $y = \frac{x^2-1}{2x+4}$
103. $y = \frac{x^2-1}{x}$
104. $y = \frac{x^3+1}{x^2}$

Past Exam Question

4. (15 points) Find all asymptotes of the graph $y = \frac{(x+3)(x+2)(x+1)}{x^2+x-2}$, if exists. Classify them as vertical, horizontal and oblique (i.e. slant).