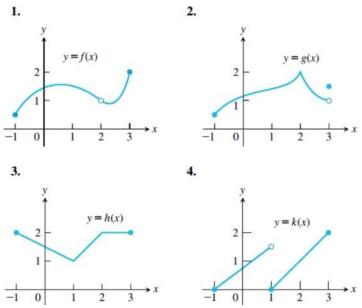
## Problem Solving\_Template

11 Ekim 2020 Pazar 19:14

#### Continuity from Graphs

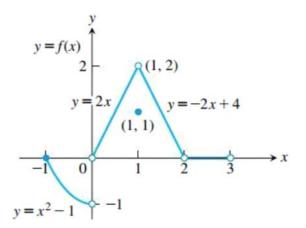
In Exercises 1–4, say whether the function graphed is continuous on [-1, 3]. If not, where does it fail to be continuous and why?



Exercises 5-10 refer to the function

$$f(x) = \begin{cases} x^2 - 1, & -1 \le x < 0\\ 2x, & 0 < x < 1\\ 1, & x = 1\\ -2x + 4, & 1 < x < 2\\ 0, & 2 < x < 3 \end{cases}$$

graphed in the accompanying figure.



The graph for Exercises 5-10.

- 5. a. Does f(-1) exist?
  - **b.** Does  $\lim_{x\to -1^+} f(x)$  exist?
  - **c.** Does  $\lim_{x \to -1^+} f(x) = f(-1)$ ?
  - **d.** Is f continuous at x = -1?
- 6. a. Does f(1) exist?
  - **b.** Does  $\lim_{x\to 1} f(x)$  exist?
  - **c.** Does  $\lim_{x \to 1} f(x) = f(1)$ ?
  - **d.** Is f continuous at x = 1?
- 7. a. Is f defined at x = 2? (Look at the definition of f.)
  - **b.** Is f continuous at x = 2?
- 8. At what values of x is f continuous?
- 9. What value should be assigned to f(2) to make the extended function continuous at x = 2?
- **10.** To what new value should f(1) be changed to remove the discontinuity?

#### Limits Involving Trigonometric Functions

Find the limits in Exercises 31–38. Are the functions continuous at the point being approached?

31. 
$$\lim_{x \to \pi} \sin (x - \sin x)$$
32. 
$$\lim_{t \to 0} \sin \left(\frac{\pi}{2} \cos (\tan t)\right)$$
33. 
$$\lim_{y \to 1} \sec (y \sec^2 y - \tan^2 y - 1)$$
34. 
$$\lim_{x \to 0} \tan \left(\frac{\pi}{4} \cos (\sin x^{1/3})\right)$$
35. 
$$\lim_{t \to 0} \cos \left(\frac{\pi}{\sqrt{19 - 3 \sec 2t}}\right)$$
36. 
$$\lim_{x \to \pi/6} \sqrt{\csc^2 x + 5\sqrt{3} \tan x}$$
37. 
$$\lim_{x \to 0^+} \sin \left(\frac{\pi}{2} e^{\sqrt{x}}\right)$$
38. 
$$\lim_{x \to 1} \cos^{-1} (\ln \sqrt{x})$$

#### Past Exam Question

6. (16 points) Let

$$f(x) = \begin{cases} x - c & \text{if } x < 2\\ b & \text{if } x = 2\\ -cx^2 + 8 & \text{if } x > 2 \end{cases}$$

(a) (6 points) Find the values of b and c that make the function f(x) continuous at x = 2.

Use the Intermediate Value Theorem in Exercises 71–78 to prove that each equation has a solution.

78.  $2 \sin x = x$  (three roots).

#### 2.6 Limits involving infiny, Asymtotes of graphs

#### **Limits of Rational Functions**

In Exercises 13–22, find the limit of each rational function (a) as  $x \to \infty$  and (b) as  $x \to -\infty$ .

**17.** 
$$h(x) = \frac{7x^3}{x^3 - 3x^2 + 6x}$$
  
**18.**  $h(x) = \frac{9x^4 + x}{2x^4 + 5x^2 - x + 6}$   
**19.**  $g(x) = \frac{10x^5 + x^4 + 31}{x^6}$   
**20.**  $g(x) = \frac{x^3 + 7x^2 - 2}{x^2 - x + 1}$ 

#### Limits as $x \to \infty$ or $x \to -\infty$

The process by which we determine limits of rational functions applies equally well to ratios containing noninteger or negative powers of x: Divide numerator and denominator by the highest power of x in the denominator and proceed from there. Find the limits in Exercises 23–36.

$$\rightarrow$$
 33.  $\lim_{x \to \infty} \frac{\sqrt{x^2 + 1}}{x + 1}$ 

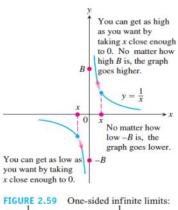
$$\rightarrow$$
 34.  $\lim_{x \to -\infty} \frac{\sqrt{x^2 + 1}}{x + 1}$ 

Finding Limits of Differences When  $x \to \pm \infty$ Find the limits in Exercises 86–92. (*Hint*: Try multiplying and dividing by the conjugate.) 86.  $\lim_{x\to\infty} (\sqrt{x+9} - \sqrt{x+4})$ 87.  $\lim_{x\to\infty} (\sqrt{x^2+25} - \sqrt{x^2-1})$ 88.  $\lim_{x\to-\infty} (\sqrt{x^2+3} + x)$ 89.  $\lim_{x\to-\infty} (2x + \sqrt{4x^2+3x-2})$ 90.  $\lim_{x\to\infty} (\sqrt{9x^2-x} - 3x)$ 

**91.** 
$$\lim_{x \to \infty} (\sqrt{x^2 + 3x} - \sqrt{x^2 - 2x})$$

**92.** 
$$\lim_{x \to \infty} (\sqrt{x^2 + x} - \sqrt{x^2 - x})$$

### **RECALL:** Infinite Limits

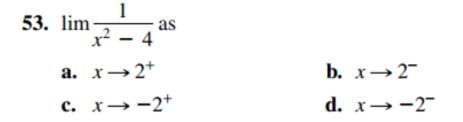


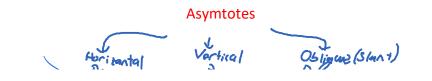
 $\lim_{x \to 0^+} \frac{1}{x} = \infty \quad \text{and} \quad \lim_{x \to 0^-} \frac{1}{x} = -\infty.$ 

Let us look again at the function f(x) = 1/x. As  $x \to 0^+$ , the values of f grow without bound, eventually reaching and surpassing every positive real number. That is, given any positive real number B, however large, the values of f become larger still (Figure 2.59). Thus, f has no limit as  $x \to 0^+$ . It is nevertheless convenient to describe the behavior of fby saying that f(x) approaches  $\infty$  as  $x \to 0^+$ . We write

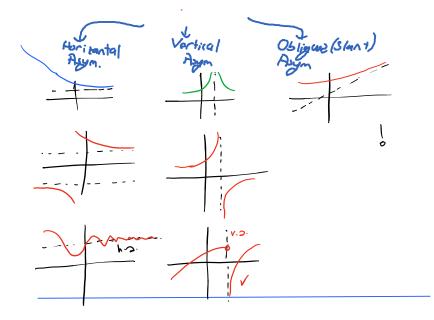
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{1}{x} = \infty.$$

In writing this equation, we are *not* saying that the limit exists. Nor are we saying that there is a real number  $\infty$ , for there is no such number. Rather, we are saying that  $\lim_{x\to 0^+} (1/x)$  does not exist because 1/x becomes arbitrarily large and positive as  $x \to 0^+$ .

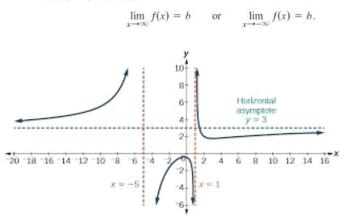




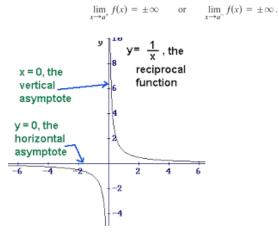
Week 2 Sayfa 5



**DEFINITION** A line y = b is a **horizontal asymptote** of the graph of a function y = f(x) if either



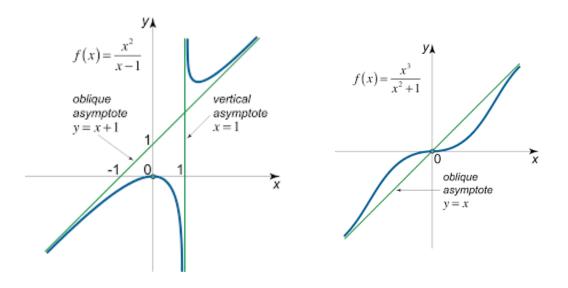
**DEFINITION** A line x = a is a vertical asymptote of the graph of a function y = f(x) if either



The straight line y = ax + b (where  $a \neq 0$ ) is an oblique asymptote of the graph of y = f(x) if

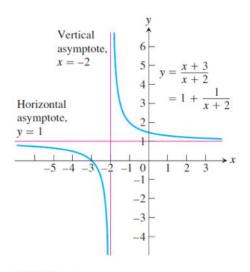
either  $\lim_{x \to -\infty} (f(x) - (ax + b)) = 0$  or  $\lim_{x \to \infty} (f(x) - (ax + b)) = 0$ ,

or both.



**EXAMPLE 15** Find the horizontal and vertical asymptotes of the curve

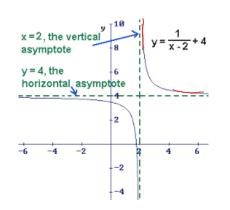
$$y = \frac{x+3}{x+2}.$$

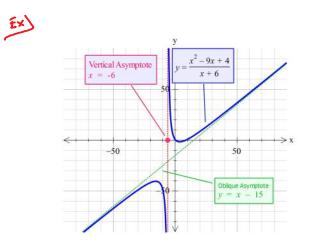


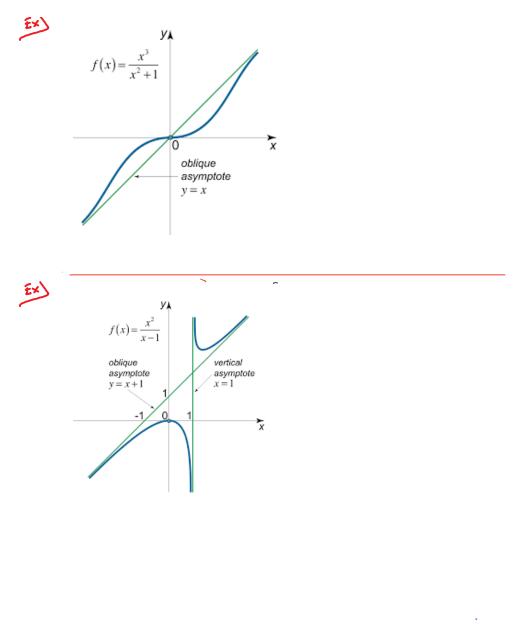
**FIGURE 2.65** The lines y = 1 and x = -2 are asymptotes of the curve in Example 15.



- •







# 

Find the oblique asymptote of graphs of the

rational functions

**99.** 
$$y = \frac{x^2}{x-1}$$
  
**100.**  $y = \frac{x^2+1}{x-1}$   
**101.**  $y = \frac{x^2-4}{x-1}$   
**102.**  $y = \frac{x^2-1}{2x+4}$   
**103.**  $y = \frac{x^2-1}{x}$   
**104.**  $y = \frac{x^3+1}{x^2}$ 

#### Past Exam Question

4. (15 points) Find all asymptotes of the graph  $y = \frac{(x+3)(x+2)(x+1)}{x^2+x-2}$ , if exists. Classify them as vertical, horizontal and oblique (i.e. slant).