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Continuity
DEFINITION
Interior point: A function y = f(x) is continuous at an interior point ¢ of its
domain if

lim f(x) = f(c).

Endpoint: A function y = f(x) is continuous at «a left endpoint « or is
continuous at a right endpoint b of its domain if

I_i.m. f(x) = f(a) or l_l[l; f(x) = f(b), respectively.

Continuity Two-sided

from the right  continuity Continuity
— from the left
m
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FIGURE 2.57 Continuity at points a, b,
and c.

If a function f is not continuous at a point ¢, we say that f is discontinuous at ¢ and
that ¢ is a point of discontinuity of f. Note that ¢ need not be in the domain of f.

A function f is right-continuous (continuous from the right) at a point x = cinits
domain if lim,—.+ f(x) = f(c¢). It is left-continuous (continuous from the left) at ¢ if
limy— f(x) = f(c). Thus, a function is continuous at a left endpoint @ of its domain if it
is right-continuous at @ and continuous at a right endpoint / of its domain if it is left-
continuous at b. A function is continuous at an interior point ¢ of its domain if and only if
it is both right-continuous and left-continuous at ¢ (Figure 2.36).

Continuity Test
A function f(x) is continuous at a point x = c¢ if and only if it meets the following
three conditions.

1. f(c) exists (c lies in the domain of f).
2. lim_,. f(x) exists (f has a limit as x — ¢).
3. lim,_,. f(x) = f(c) (the limit equals the function value).
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EXAMPLE 1 At which numbers does the function f in Figure 2.56 appear to be

continuous? Explain why. What occurs at other numbers in the domain?

¥

E
2k . y=f(x)
19 )
\ -
1 1 1 X
0 1 2 3 4

FIGURE 2.56 The function is not
continuousat x = l,x = 2, and x = 4

EXAMPLE 3 The unit step function U(x), graphed in Figure 2.59, is right-continu-
ous at x = 0, but is neither left-continuous nor continuous there. It has a jump discontinu-

ity at x = 0.
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FIGURE 2.59 A function
that has a jump discontinuity
at the origin (Example 3).

Continuous Functions

A function is continuous on an interval if and only if it is continuous at every point of the
interval. For example, the semicircle function graphed in Figure 2.37 is continuous on the
interval [—2, 2], which is its domain. A continuous function is one that is continuous at
every point of its domain. A continuous function need not be continuous on every interval.

EXAMPLE 2 The function f(x) = V4 — x? is continuous over its domain [—2,2]
(Figure 2.58). It is right-continuous at x = —2, and left-continuous at x = 2. |

FIGURE 2.58 A function that
is continuous over its domain
(Example 2).

EXAMPLE 5

(a) The function y = 1/x (Figure 2.41) is a continuous function because it is continuous
at every point of its domain. It has a point of discontinuity at x = 0, however, because
it is not defined there; that is, it is discontinuous on any interval containing x = 0.

(b) The identity function f(x) = x and constant functions are continuous everywhere by
Example 3, Section 2.3. [ ]
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FIGURE 2.62 The function
f(x) = 1/x is continuous over its
natural domain. It is not defined at
the origin, so it is not continuous
on any interval containing x = 0
(Example 5).
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FIGURE 2.61 The function in (a) is continuous at x = 0; the
functions in (b) through (f) are not.

‘Properties of Continuous Functions

THEOREM 8—Properties of Continuous Functions  If the functions f and
g are continuous at x = ¢, then the following combinations are continuous at
X =c.

1. Sums: f+g

2. Differences: f-g

3. Constant multiples: k- f, for any number &

4. Products: fe

5. Quotients: f/g, provided g(c) # 0

6. Powers: ", napositive integer

7. Roots: \"/j provided it is defined on an open interval

containing ¢, where # is a positive integer
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Composite of Continuous Functions

THEOREM 9—Composite of Continuous Functions If f is continuous at ¢ and
£ is continuous at f(c), then the composite g = f is continuous at c.

F L

~ Continuous at ¢

4 g 0
B4 y . .
Continuous Continuous
4 ate X atfle) _
¢ flc) 2(fle)

FIGURE 2.63 Compositions of continuous functions are continuous.

EXAMPLE 8  Show that the following functions are continuous on their natural domains.

2/3
—_——— x5
(@ y=Vx=2x-3 (b) y= ry
1+ X
xsinx
(c) v d) v "“ X
: x4+ 2

THEOREM 10—Limits of Continuous Functions If g is continuous at the point
b and limg— f(x) = b, then

limy—e g f(x)) = glb) = gllimy— f(x)).

EXAMPLE 9 As an application of Theorem 11, we have the following calculations.

f o3 ¢ . . (37w
(a) lim co.\(l\ + sm(f + X =cos| lim 2x + lim sin| =5~ + x
t—eml2 2 sl sz 2

= cos(m + sin27w) = cos 7 = —1.

® lim sin”! (1| =

=0 x—el)

(© lim Vi + 1% = lim Vx + l'cxp(lin}‘ tan .\‘)

=1 =1 B

Intermediate Value Thegorem
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THEOREM 11—The Intermediate Value Theorem for Continuous Functions  If f
is a continuous function on a closed interval [a, b], and if )y is any value between
fla) and f(b), then yy = f(c) for some cin [a, b].

y = fix)

A Consequence for Graphing: Connectedness Theorem 11 implies that the graph of a
function continuous on an interval cannot have any breaks over the interval. It will be
connected—a single, unbroken curve. It will not have jumps like the graph of the greatest
integer function (Figure 2.39). or separate branches like the graph of 1/x (Figure 2.41).

A Consequence for Root Finding We call a solution of the equation f(x) = 0 a root of
the equation or zero of the function f. The Intermediate Value Theorem tells us that if f is
continuous, then any interval on which f changes sign contains a zero of the function.

55. Roots of a cubic Show-that the equation x> — 15x + 1 = 0
has three solutions in the interval [—4, 4].

Limits Involving Infinity; Asymptotes of
Graphs

¢ The symbol for infinity co does not represent a real number.
* We use oo to describe the behavior of a function when the
values in its domain or range outgrow all finite bounds.
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THEOREM 12  All the limit laws in Theorem [ are true when we replace
limy—. by limy—oo or limy—_~ That is, the variable x may approach a finite
number ¢ or £00.

EXAMPLE 2  The properties in Theorem 12 are used to calculate limits in the same way
as when x approaches a finite number c.

4 2 | e : 1
(a) lim (3 + e lim 5 + lim X Sum Rule
X—0C ? X=X x=00 7
=5+0=35 Known limits
oaV3_ 11
(b) lim 5— = lim 11\/5-?-—\;
X——0 X X——0C e
e o 1 i .
= lim 7#V3- lim - lim &  Product Rule
x——X X——00 " x——00 °
/3 Cnov nits
=7V3:-0-0=0 Known limi g2

Strategy: Limits at Infinity of Rational Functions

To determine the limit of a rational function as x — 00, we first divide the numerator
and denominator by the highest power of x in the denominator.

RS e |
3. lim =—————=
x>0 (85 4 3y + Vi

o Va—5r+3
32, Im —F/—————
x—-cc. )l 4 x3 — 4
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Horizontal Asymptotes

DEFINITION  Aline vy = b is a horizontal asymptote of the graph of a func-
tion y = f(x) if either

lim f(x) = b or E‘Pw flx) = b.

x>0

EXAMPLE 5  The x-axis (the line y = 0) is a horizontal asymptote of the graph of
v = ¢" because

lim e* = 0.

F—*— 00

EXAMPLE 6 Find (a) imwsin(l\g) and (b) ETOC.”i“(I/-")‘

(a) We introduce the new variable r = 1/x. From Example 1, we know that t— 0" as
x —> 00 (see Figure 2.49). Therefore,
iinit

% | ) X
lim siny = lim sins = 0.
X0 ° —0*

(b) We calculate the limits as x — 00 and x — —00:

; saed coome SIRE s N o || f
lim xsiny = lim =1 and lim xsiny = lim —— = 1.
XX ’ —0t ! x——00 ‘ —0
The graph is shown in Figure 2.55, and we see that the line y = 1 is a horizontal
asymptote. ]

% The Sandwich Theorem also holds for limits as x — +00.

EXAMPLE 8  Using the Sandwich Theorem, find the horizontal asymptote of the curve

sin x

}’:2+ T
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Solution ~ We are interested in the behavior as x — +0c. Since
X

and limy—.co [1/x] = 0, we have limy—.oc (sinx)/x = 0 by the Sandwich Theorem.
Hence,

sin x
X

0=

lim (2+¥)=2+0=2.

x50

and the line y = 2 is a horizontal asymptote of the curve on both left and right (Figure 2.57).
This example illustrates that a curve may cross one of its horizontal asymptotes many

times. ]
v ’
’[ L sin x
/ \‘ =2+
e 2 3 1
——
1
| | 1 1 1 | X
37 2w —w 0 T 2w 3w

FIGURE 2.57 A curve may cross one of
its asymptotes infinitely often (Example 8).

Oblique Asymptotes

If the degree of the numerator of a rational function is 1 greater than the degree of the de-
nominator, the graph has an oblique or slant line asymptote. We find an equation for the
asymptote by dividing numerator by denominator to express f as a linear function plus a
remainder that goes to zero as x — +00.

The straight line y = ax + b (where a # 0) is an oblique asymptote of the graph
of y = f(x)if

either xlir_noo(f(x) —(ax+b))=0 or (f(x) = (ax + b)) =0,

lim
X—20

or both.

EXAMPLE 10  Find the oblique asymptote of the graph of

w2 =3
fl) =53

in Figure 2.58,
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The vertical distance

P hetween curve and
line goes fo zero as x —
=
4 = Ohligue
it /" ! asymplode
2k A ",\‘-%+]:
./""J'?H\‘l :
Es L L :
To T2 3 4 !
1+
2t
=3k
Infinity Limit

Let us look again at the function f(x) = 1/x. As x— 0", the values of f grow without
bound. eventually reaching and surpassing every positive real number. That is, given any
positive real number B, however large, the values of f become larger still (Figure 2.59).

Thus, f has no limit as x — 0", It is nevertheless convenient to describe the behavior of f
by saying that f(x) approaches o as x — 0". We write

. PN |
| x)=1 - = 00,
Jim, f0) = lim, 5
In writing this equation, we are nof saying that the limit exists. Nor are we saying that there

is a real number o0, for there is no such number. Rather, we are saying that limy—g+ (1/x)
does not exist because | [x becomes arbitrarily large and positive as x —> 0",

>

You can get as high
as you want by
taking x close enough
to 0. No matter how
high B is, the graph
B % | goes higher.

ng——
et
[
=

1]
No matter how

low —B is, the

graph goes lower.
You can get as low as| ¢ —B

you want by taking
x close enough to 0.

)

FIGURE 2.59 One-sided infinite limits:

lim &+ = o and lim & = —oo,
x—=0" x—=0"

EXAMPLE 12 Discuss the behavior of

flx) = Lz as x—0.
x
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You can get as high
as you want by

No matter how :k(;ngNro t'..."s.c.. 2".’.‘:.‘3'
high B is, the graph high B is, the graph
goes higher. B¢ | goes higher.

x
Yo =
\ No matter how
low—Bis, the
graph goes lower.
Py >
X

X You can get as low as| e —B
you want by taking
x close enough to 0.

b o

~p———

EXAMPLE 13  These examples illustrate that rational functions can behave in various
ways near zeros of the denominator.

. (x=2)
W Jiy

. x — 2
b) 1 =
()xl—IPsz—f-l
© lim 53 =

=2 x? — 4

. x— 3
d) lim =
( ) x—>2 ).‘2 — 4

. -3
lim 5—— =
© xl—rbnzxz—-’-l

. 2—x _
O =2

Vertical Asymptotes

DEFINITION A line x = a is a vertical asymptote of the graph of a function
v = f(x) if either

lim_f(x) = £00 or lim f(x) = +o00.

x—*a x—a

Nerdsced

! Dopp
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EXAMPLE 15  Find the horizontal and vertical asymptotes of the curve
_x+3
V=———"7.
x+ 2
y
Vertical
asymptote, 6
Sl el
Horizontal 3l =1+ x 4l» 2
asymptote, 2
y=1 .
ﬁ L I | x
-5 -4 -3 1 (l) 123
-
-4}

FIGURE 2.65 Thelines y = 1 and

x = =2 are asymptotes of the curve in
Example 15.
EXAMPLE 17  The graph of the natural logarithm function has the y-axis (the line x = 0)

as a vertical asymptote. We see this from the graph sketched in Figure 2.67 (which is the
reflection of the graph of the natural exponential function across the line y = x) and the
fact that the x-axis is a horizontal asymptote of y = ¢* (Example 5). Thus,

lim Inx = —00,
x—0"
The same result is true for y = log, x whenevera > 1. &
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FIGURE 2.67 The line x = 0 is a vertical
asymptote of the natural logarithm
function (Example 17).

EXAMPLE 18  The curves

o o s <l d . __ sinx
Y =8CX = 5osw an y.= tnx = 555y

both have vertical asymptotes at odd-integer multiples of 77/2, where cos x = 0 (Figure 2.68).

y
* ¥y = secx ; y=tanx

| S—
¥+ O ¥ 7 3 2 WA W
2 2 2 2 2 2 2
|

FIGURE 2.68 The graphs of sec x and tan x have infinitely many vertical
asymptotes (Example 18). |

o

Asymptotes

{
Vertica| b g Glant)
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