Continuity

DEFINITION

Interior point: A function y = f(x) is continuous at an interior point c of its domain if

$$\lim_{x \to c} f(x) = f(c).$$

Endpoint: A function y = f(x) is continuous at a left endpoint *a* or is continuous at a right endpoint *b* of its domain if

 $\lim_{x \to a^+} f(x) = f(a) \quad \text{or} \quad \lim_{x \to b^-} f(x) = f(b), \text{ respectively.}$

If a function f is not continuous at a point c, we say that f is **discontinuous** at c and that c is a **point of discontinuity** of f. Note that c need not be in the domain of f.

A function f is **right-continuous (continuous from the right)** at a point x = c in its domain if $\lim_{x\to c^+} f(x) = f(c)$. It is **left-continuous (continuous from the left)** at c if $\lim_{x\to c^-} f(x) = f(c)$. Thus, a function is continuous at a left endpoint a of its domain if it is right-continuous at a and continuous at a right endpoint b of its domain if it is left-continuous at b. A function is continuous at an interior point c of its domain if and only if it is both right-continuous and left-continuous at c (Figure 2.36).

Continuity Test A function $f(x)$ is continuo three conditions.	us at a point $x = c$ if and only if it meets the following
1. $f(c)$ exists	(c lies in the domain of f).
2. $\lim_{x\to c} f(x)$ exists	(<i>f</i> has a limit as $x \rightarrow c$).
3. $\lim_{x \to c} f(x) = f(c)$	(the limit equals the function value).

EXAMPLE 1 At which numbers does the function f in Figure 2.56 appear to be continuous? Explain why. What occurs at other numbers in the domain?

FIGURE 2.56 The function is not continuous at x = 1, x = 2, and x = 4

EXAMPLE 3 The unit step function U(x), graphed in Figure 2.59, is right-continuous at x = 0, but is neither left-continuous nor continuous there. It has a jump discontinuity at x = 0.

FIGURE 2.59 A function that has a jump discontinuity at the origin (Example 3).

Continuous Functions

A function is **continuous on an interval** if and only if it is continuous at every point of the interval. For example, the semicircle function graphed in Figure 2.37 is continuous on the interval [-2, 2], which is its domain. A **continuous function** is one that is continuous at every point of its domain. A continuous function need not be continuous on every interval.

EXAMPLE 2 The function $f(x) = \sqrt{4 - x^2}$ is continuous over its domain [-2, 2] (Figure 2.58). It is right-continuous at x = -2, and left-continuous at x = 2.

FIGURE 2.58 A function that is continuous over its domain (Example 2).

EXAMPLE 5

- (a) The function y = 1/x (Figure 2.41) is a continuous function because it is continuous at every point of its domain. It has a point of discontinuity at x = 0, however, because it is not defined there; that is, it is discontinuous on any interval containing x = 0.
- (b) The identity function f(x) = x and constant functions are continuous everywhere by Example 3, Section 2.3.

FIGURE 2.62 The function f(x) = 1/x is continuous over its natural domain. It is not defined at the origin, so it is not continuous on any interval containing x = 0(Example 5).

FIGURE 2.61 The function in (a) is continuous at x = 0; the functions in (b) through (f) are not.

Properties of Continuous Functions

THEOREM 8—Properties of Continuous Functions If the functions f and g are continuous at x = c, then the following combinations are continuous at

x = c.

1.	Sums:	f + g
2.	Differences:	f - g

- 2. Differences:
- 3. Constant multiples:
- 4. Products:
- f·g 5. Quotients: f/g, provided $g(c) \neq 0$
 - f^n , *n* a positive integer

 $k \cdot f$, for any number k

- 6. Powers: 7. Roots:
- $\sqrt[n]{f}$, provided it is defined on an open interval containing c, where n is a positive integer

Composite of Continuous Functions

EXAMPLE 8 Show that the following functions are continuous on their natural domains.

(a) $y = \sqrt{x^2 - 2x - 5}$	(b) $y = \frac{x^{2/3}}{1+x^4}$
(c) $y = \left \frac{x-2}{x^2-2} \right $	$(\mathbf{d}) y = \left \frac{x \sin x}{x^2 + 2} \right $

 $\lim_{x\to c} g(f(x)) = g(b) = g(\lim_{x\to c} f(x)).$

EXAMPLE 9 As an application of Theorem 11, we have the following calculations.
(a)
$$\lim_{x \to \pi/2} \cos\left(2x + \sin\left(\frac{3\pi}{2} + x\right)\right) = \cos\left(\lim_{x \to \pi/2} 2x + \lim_{x \to \pi/2} \sin\left(\frac{3\pi}{2} + x\right)\right)$$

$$= \cos\left(\pi + \sin 2\pi\right) = \cos \pi = -1.$$
(b)
$$\lim_{x \to 1} \sin^{-1}\left(\frac{1-x}{1-x^2}\right) = \sin^{-1}\left(\lim_{x \to 1} \frac{1-x}{1-x^2}\right)$$
Arcsine is continuous.

$$= \sin^{-1}\left(\lim_{x \to 1} \frac{1}{1+x}\right)$$
Cancel common factor (1 - x).

$$= \sin^{-1}\frac{1}{2} = \frac{\pi}{6}$$
(c)
$$\lim_{x \to 0} \sqrt{x+1} e^{\tan x} = \lim_{x \to 0} \sqrt{x+1} \cdot \exp\left(\lim_{x \to 0} \tan x\right)$$
exp is continuous.

$$= 1 \cdot e^0 = 1$$

Intermediate Value Theorem

THEOREM 11—The Intermediate Value Theorem for Continuous Functions If f is a continuous function on a closed interval [a, b], and if y_0 is any value between f(a) and f(b), then $y_0 = f(c)$ for some c in [a, b].

A Consequence for Graphing: Connectedness Theorem 11 implies that the graph of a function continuous on an interval cannot have any breaks over the interval. It will be **connected**—a single, unbroken curve. It will not have jumps like the graph of the greatest integer function (Figure 2.39), or separate branches like the graph of 1/x (Figure 2.41).

A Consequence for Root Finding We call a solution of the equation f(x) = 0 a **root** of the equation or **zero** of the function f. The Intermediate Value Theorem tells us that if f is continuous, then any interval on which f changes sign contains a zero of the function.

55. Roots of a cubic Show that the equation $x^3 - 15x + 1 = 0$ has three solutions in the interval [-4, 4].

Limits Involving Infinity; Asymptotes of Graphs

- The symbol for infinity ∞ does not represent a real number.
- We use ∞ to describe the behavior of a function when the values in its domain or range outgrow all finite bounds.

THEOREM 12 All the limit laws in Theorem 1 are true when we replace $\lim_{x\to c}$ by $\lim_{x\to\infty}$ or $\lim_{x\to-\infty}$. That is, the variable *x* may approach a finite number *c* or $\pm\infty$.

EXAMPLE 2 The properties in Theorem 12 are used to calculate limits in the same way as when x approaches a finite number c.

(a)
$$\lim_{x \to \infty} \left(5 + \frac{1}{x} \right) = \lim_{x \to \infty} 5 + \lim_{x \to \infty} \frac{1}{x}$$
 Sum Rule
 $= 5 + 0 = 5$ Known limits
(b) $\lim_{x \to -\infty} \frac{\pi \sqrt{3}}{x^2} = \lim_{x \to -\infty} \pi \sqrt{3} \cdot \frac{1}{x} \cdot \frac{1}{x}$
 $= \lim_{x \to -\infty} \pi \sqrt{3} \cdot \lim_{x \to -\infty} \frac{1}{x} \cdot \lim_{x \to -\infty} \frac{1}{x}$ Product Rule
 $= \pi \sqrt{3} \cdot 0 \cdot 0 = 0$ Known limits

Strategy: Limits at Infinity of Rational Functions

To determine the limit of a rational function as $x \rightarrow \pm \infty$, we first divide the numerator and denominator by the highest power of x in the denominator.

31.
$$\lim_{x \to \infty} \frac{2x^{5/3} + x^{1/3} + 7}{x^{8/5} + 3x + \sqrt{x}}$$

32.
$$\lim_{x \to -\infty} \frac{\sqrt[3]{x} - 5x + 3}{2x^{1} + x^{2/3} - 4}$$

Horizontal Asymptotes

DEFINITION A line y = b is a **horizontal asymptote** of the graph of a function y = f(x) if either

$$\lim_{x \to \infty} f(x) = b \quad \text{or} \quad \lim_{x \to -\infty} f(x) = b.$$

EXAMPLE 5 The *x*-axis (the line y = 0) is a horizontal asymptote of the graph of $y = e^x$ because

$$\lim_{x \to -\infty} e^x = 0.$$

EXAMPLE 6 Find (a) $\lim_{x \to \infty} \sin(1/x)$ and (b) $\lim_{x \to \pm \infty} x \sin(1/x)$.

(a) We introduce the new variable t = 1/x. From Example 1, we know that t→0⁺ as x→∞ (see Figure 2.49). Therefore,

$$\lim_{x \to \infty} \sin \frac{1}{x} = \lim_{t \to 0^+} \sin t = 0.$$

(b) We calculate the limits as $x \to \infty$ and $x \to -\infty$:

$$\lim_{x \to \infty} x \sin \frac{1}{x} = \lim_{t \to 0^+} \frac{\sin t}{t} = 1 \quad \text{and} \quad \lim_{x \to -\infty} x \sin \frac{1}{x} = \lim_{t \to 0^-} \frac{\sin t}{t} = 1.$$

The graph is shown in Figure 2.55, and we see that the line y = 1 is a horizontal asymptote.

★ The Sandwich Theorem also holds for limits as $x \to \pm \infty$.

EXAMPLE 8 Using the Sandwich Theorem, find the horizontal asymptote of the curve

$$y = 2 + \frac{\sin x}{x}.$$

Solution We are interested in the behavior as $x \to \pm \infty$. Since

$$0 \le \left| \frac{\sin x}{x} \right| \le \left| \frac{1}{x} \right|$$

and $\lim_{x\to\pm\infty} |1/x| = 0$, we have $\lim_{x\to\pm\infty} (\sin x)/x = 0$ by the Sandwich Theorem. Hence,

$$\lim_{x \to \pm \infty} \left(2 + \frac{\sin x}{x} \right) = 2 + 0 = 2,$$

and the line y = 2 is a horizontal asymptote of the curve on both left and right (Figure 2.57).

This example illustrates that a curve may cross one of its horizontal asymptotes many times.

,

FIGURE 2.57 A curve may cross one of its asymptotes infinitely often (Example 8).

Oblique Asymptotes

If the degree of the numerator of a rational function is 1 greater than the degree of the denominator, the graph has an **oblique** or **slant line asymptote**. We find an equation for the asymptote by dividing numerator by denominator to express *f* as a linear function plus a remainder that goes to zero as $x \rightarrow \pm \infty$.

The straight line y = ax + b (where $a \neq 0$) is an **oblique asymptote** of the graph of y = f(x) if

either
$$\lim_{x \to -\infty} (f(x) - (ax + b)) = 0 \quad \text{or} \quad \lim_{x \to \infty} (f(x) - (ax + b)) = 0,$$

or both.

EXAMPLE 10 Find the oblique asymptote of the graph of

$$f(x) = \frac{x^2 - 3}{2x - 4}$$

in Figure 2.58.

Infinity Limit

Let us look again at the function f(x) = 1/x. As $x \to 0^+$, the values of f grow without bound, eventually reaching and surpassing every positive real number. That is, given any positive real number B, however large, the values of f become larger still (Figure 2.59). Thus, f has no limit as $x \to 0^+$. It is nevertheless convenient to describe the behavior of fby saying that f(x) approaches ∞ as $x \to 0^+$. We write

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{1}{x} = \infty$$

In writing this equation, we are *not* saying that the limit exists. Nor are we saying that there is a real number ∞ , for there is no such number. Rather, we are saying that $\lim_{x\to 0^+} (1/x)$ *does not exist because* 1/x *becomes arbitrarily large and positive as* $x \to 0^+$.

$$f(x) = \frac{1}{x^2}$$
 as $x \to 0$.

of

EXAMPLE 13 These examples illustrate that rational functions can behave in various ways near zeros of the denominator.

- (a) $\lim_{x \to 2} \frac{(x-2)^2}{x^2-4} =$
- **(b)** $\lim_{x \to 2} \frac{x-2}{x^2-4} =$
- (c) $\lim_{x \to 2^+} \frac{x-3}{x^2-4} =$
- (d) $\lim_{x \to 2^-} \frac{x-3}{x^2-4} =$
- (e) $\lim_{x \to 2} \frac{x-3}{x^2-4} =$
- (f) $\lim_{x \to 2} \frac{2-x}{(x-2)^3} =$

Vertical Asymptotes

DEFINITION A line x = a is a **vertical asymptote** of the graph of a function y = f(x) if either

$$\lim_{x \to a^+} f(x) = \pm \infty \quad \text{or} \quad \lim_{x \to a^-} f(x) = \pm \infty.$$

EXAMPLE 15 Find the horizontal and vertical asymptotes of the curve

$$y = \frac{x+3}{x+2}.$$

FIGURE 2.65 The lines y = 1 and x = -2 are asymptotes of the curve in Example 15.

EXAMPLE 17 The graph of the natural logarithm function has the *y*-axis (the line x = 0) as a vertical asymptote. We see this from the graph sketched in Figure 2.67 (which is the reflection of the graph of the natural exponential function across the line y = x) and the fact that the *x*-axis is a horizontal asymptote of $y = e^x$ (Example 5). Thus,

$$\lim_{x \to 0^+} \ln x = -\infty.$$

The same result is true for $y = \log_a x$ whenever a > 1.

FIGURE 2.67 The line x = 0 is a vertical asymptote of the natural logarithm function (Example 17).

EXAMPLE 18 The curves

$$y = \sec x = \frac{1}{\cos x}$$
 and $y = \tan x = \frac{\sin x}{\cos x}$

both have vertical asymptotes at odd-integer multiples of $\pi/2$, where $\cos x = 0$ (Figure 2.68).

FIGURE 2.68 The graphs of sec *x* and tan *x* have infinitely many vertical asymptotes (Example 18).

