Lecture_Template

Saturday, December 19, 2020 7:13 PM

6 APPLICATIONS OF DEFINITE INTEGRALS

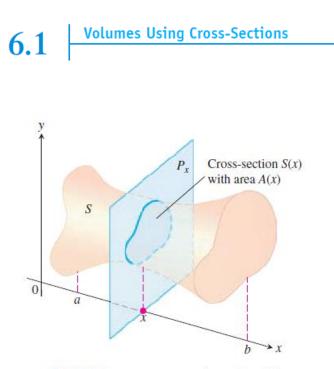


FIGURE 6.1 A cross-section S(x) of the solid S formed by intersecting S with a plane P_x perpendicular to the x-axis through the point x in the interval [a, b].

Slicing by Parallel Planes

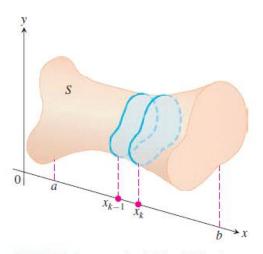


FIGURE 6.3 A typical thin slab in the solid *S*.

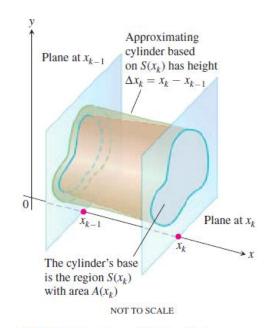


FIGURE 6.4 The solid thin slab in Figure 6.3 is shown enlarged here. It is approximated by the cylindrical solid with base $S(x_k)$ having area $A(x_k)$ and height $\Delta x_k = x_k - x_{k-1}$.

The volume V_k of this cylindrical solid is $A(x_k) \cdot \Delta x_k$, which is approximately the same volume as that of the slab:

Volume of the *k*th slab $\approx V_k = A(x_k) \Delta x_k$.

$$V \approx \sum_{k=1}^{n} V_k = \sum_{k=1}^{n} A(x_k) \Delta x_k.$$

$$\lim_{n \to \infty} \sum_{k=1}^n A(x_k) \ \Delta x_k = \int_a^b A(x) \, dx.$$

DEFINITION The volume of a solid of integrable cross-sectional area A(x) from x = a to x = b is the integral of A from a to b,

$$V = \int_{a}^{b} A(x) \, dx.$$

Calculating the Volume of a Solid

- 1. Sketch the solid and a typical cross-section.
- 2. Find a formula for A(x), the area of a typical cross-section.
- 3. Find the limits of integration.
- 4. Integrate A(x) to find the volume.

EXAMPLE 1 A pyramid 3 m high has a square base that is 3 m on a side. The crosssection of the pyramid perpendicular to the altitude x m down from the vertex is a square x m on a side. Find the volume of the pyramid.



FIGURE 6.5 The cross-sections of the pyramid in Example 1 are squares.

EXAMPLE 2 A curved wedge is cut from a circular cylinder of radius 3 by two planes. One plane is perpendicular to the axis of the cylinder. The second plane crosses the first plane at a 45° angle at the center of the cylinder. Find the volume of the wedge.

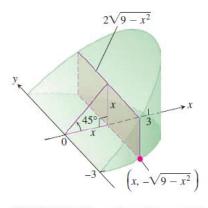
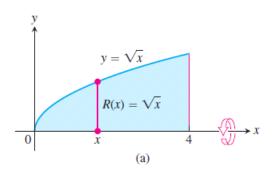
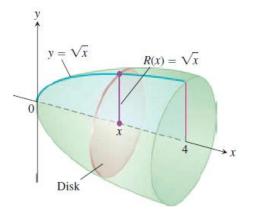


FIGURE 6.6 The wedge of Example 2, sliced perpendicular to the *x*-axis. The cross-sections are rectangles.

Solids of Revolution: The Disk Method



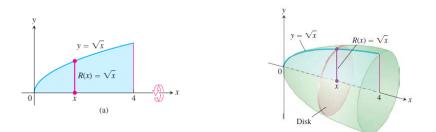


$$A(x) = \pi (\text{radius})^2 = \pi [R(x)]^2.$$

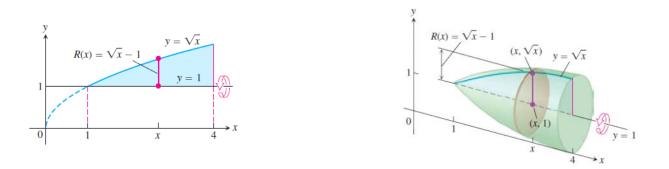
Volume by Disks for Rotation About the x-axis

$$V = \int_a^b A(x) \, dx = \int_a^b \pi [R(x)]^2 \, dx.$$

EXAMPLE 4 The region between the curve $y = \sqrt{x}$, $0 \le x \le 4$, and the *x*-axis is revolved about the *x*-axis to generate a solid. Find its volume.



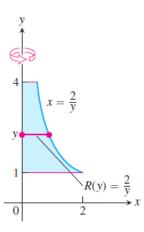
EXAMPLE 6 Find the volume of the solid generated by revolving the region bounded by $y = \sqrt{x}$ and the lines y = 1, x = 4 about the line y = 1.



Volume by Disks for Rotation About the y-axis

$$V = \int_c^d A(y) \, dy = \int_c^d \pi[R(y)]^2 \, dy.$$

EXAMPLE 7 Find the volume of the solid generated by revolving the region between the *y*-axis and the curve x = 2/y, $1 \le y \le 4$, about the *y*-axis.



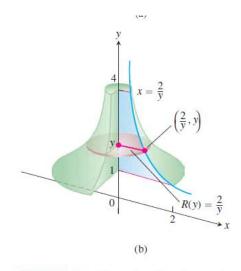


FIGURE 6.11 The region (a) and part of the solid of revolution (b) in Example 7.

Solids of Revolution: The Washer Method

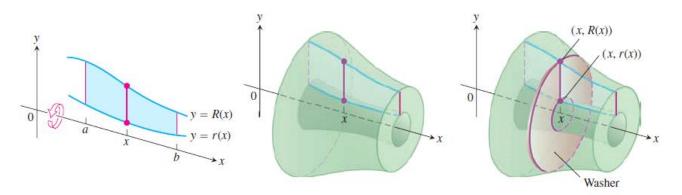


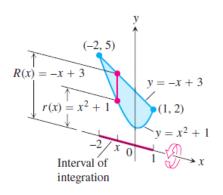
FIGURE 6.13 The cross-sections of the solid of revolution generated here are washers, not disks, so the integral $\int_a^b A(x) dx$ leads to a slightly different formula.

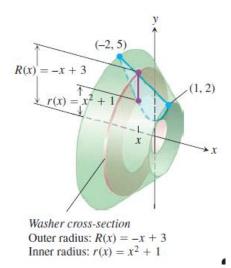
Outer radius:	R(x)	The washer's area is
Inner radius:	r(x)	

Volume by Washers for Rotation About the *x*-axis

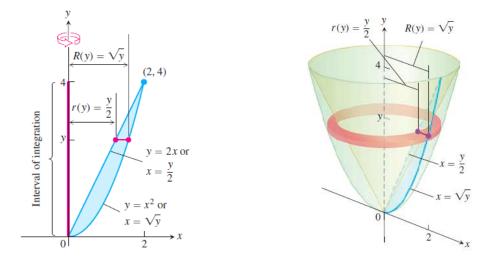
$$V = \int_{a}^{b} A(x) \, dx = \int_{a}^{b} \pi([R(x)]^2 - [r(x)]^2) \, dx.$$

EXAMPLE 9 The region bounded by the curve $y = x^2 + 1$ and the line y = -x + 3 is revolved about the *x*-axis to generate a solid. Find the volume of the solid.





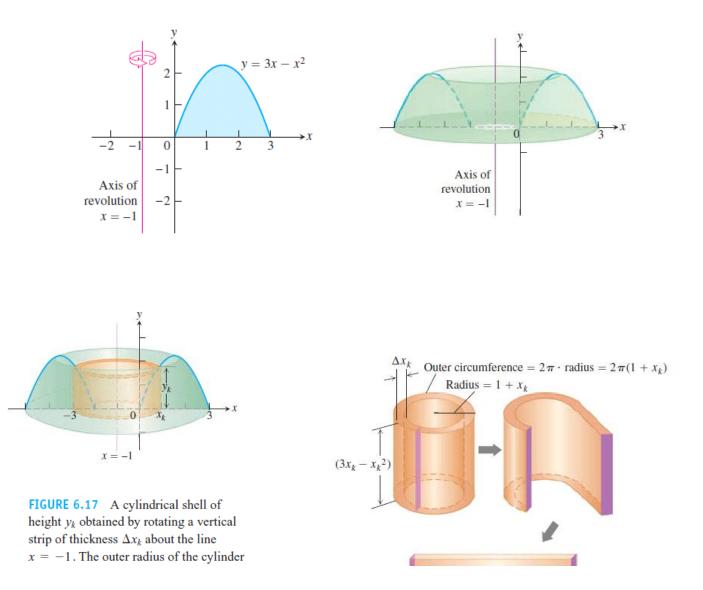
EXAMPLE 10 The region bounded by the parabola $y = x^2$ and the line y = 2x in the first quadrant is revolved about the *y*-axis to generate a solid. Find the volume of the solid.



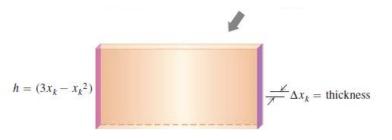
6.2 Volumes Using Cylindrical Shells

Slicing with Cylinders

EXAMPLE 1 The region enclosed by the x-axis and the parabola $y = f(x) = 3x - x^2$ is revolved about the vertical line x = -1 to generate a solid (Figure 6.16). Find the volume of the solid.



height y_k obtained by rotating a vertical strip of thickness Δx_k about the line x = -1. The outer radius of the cylinder occurs at x_k , where the height of the parabola is $y_k = 3x_k - x_k^2$ (Example 1).



 $\Delta V_k = \text{circumference} \times \text{height} \times \text{thickness}$

$$= 2\pi(1+x_k)\cdot (3x_k-x_k^2)\cdot \Delta x_k.$$

$$\sum_{k=1}^{n} \Delta V_k = \sum_{k=1}^{n} 2\pi (x_k + 1) (3x_k - x_k^2) \Delta x_k.$$

Taking the limit as the thickness $\Delta x_k \rightarrow 0$ and $n \rightarrow \infty$ gives the volume integral

$$V \approx \sum_{k=1}^{n} \Delta V_k.$$

$$V = \lim_{n \to \infty} \sum_{k=1}^{n} 2\pi (x_k + 1) (3x_k - x_k^2) \Delta x_k$$

$$= \int_0^3 2\pi (x + 1) (3x - x^2) dx$$

$$= \int_0^3 2\pi (3x^2 + 3x - x^3 - x^2) dx$$

$$= 2\pi \int_0^3 (2x^2 + 3x - x^3) dx$$

$$= 2\pi \left[\frac{2}{3} x^3 + \frac{3}{2} x^2 - \frac{1}{4} x^4 \right]_0^3 = \frac{45\pi}{2}.$$

$$V = \lim_{n \to \infty} \sum_{k=1}^{n} \Delta V_{k} = \int_{a}^{b} 2\pi (\text{shell radius}) (\text{shell height}) \, dx.$$

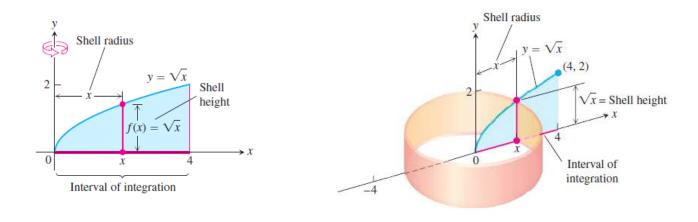
The Shell Method

Shell Formula for Revolution About a Vertical Line

The volume of the solid generated by revolving the region between the *x*-axis and the graph of a continuous function $y = f(x) \ge 0, L \le a \le x \le b$, about a vertical line x = L is

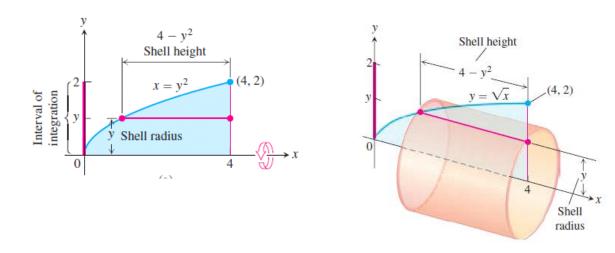
$$V = \int_{a}^{b} 2\pi \binom{\text{shell}}{\text{radius}} \binom{\text{shell}}{\text{height}} dx$$

EXAMPLE 2 The region bounded by the curve $y = \sqrt{x}$, the *x*-axis, and the line x = 4 is revolved about the *y*-axis to generate a solid. Find the volume of the solid.



$$V = \int_{a}^{b} 2\pi \left(\begin{array}{c} \text{shell} \\ \text{radius} \end{array} \right) \left(\begin{array}{c} \text{shell} \\ \text{height} \end{array} \right) dx$$

EXAMPLE 3 The region bounded by the curve $y = \sqrt{x}$, the x-axis, and the line x = 4 is revolved about the x-axis to generate a solid. Find the volume of the solid by the shell method.



 $V = \int_{a}^{b} 2\pi \left(\begin{array}{c} \text{shell} \\ \text{radius} \end{array} \right) \left(\begin{array}{c} \text{shell} \\ \text{height} \end{array} \right) dy$

Summary of the Shell Method

Regardless of the position of the axis of revolution (horizontal or vertical), the steps for implementing the shell method are these.

- 1. Draw the region and sketch a line segment across it parallel to the axis of revolution. Label the segment's height or length (shell height) and distance from the axis of revolution (shell radius).
- 2. Find the limits of integration for the thickness variable.
- 3. *Integrate* the product 2π (shell radius) (shell height) with respect to the thickness variable (x or y) to find the volume.

Pop-Up Quiz

