Lecture

Saturday, December 19, 2020 7:13PM

APPLICATIONS OF
DEFINITE INTEGRALS

6 1 | Volumes Using Cross-Sections
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FIGURE 6.1 A cross-section S(x) of the
solid § formed by intersecting S with a plane
P, perpendicular to the x-axis through the
point x in the interval [a, b].

Slicing by Parallel Planes
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FIGURE 6.3 A typical thin slab in the
solid S.
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FIGURE 6.4 The solid thin slab in
Figure 6.3 is shown enlarged here. It is
approximated by the cylindrical solid with
base S(x;) having area A(x;) and height
A_\'k = Xg — Xg—1-
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The volume V; of this cylindrical solid is A(x;) - Axz, whfch is approximately the same

volume as that of the slab:

Volume of the kth slab & V; =" A4(x;) Ax;.
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DEFINITION The volume of a solid%f integrable cross-sectional area A(x)
from x = ato x = b is the integral of 4 from a to b,

b
V=/A(x)dx.

Calculating the Volume of a Solid A &)
1. Sketch the solid and a typical cross-section.
2. Find a formula for A(x), the area of a typical cross-section.

3. Find the limits of integration. \/t ‘/Eﬂ & dx
4. Integrate A(x) to find the volume. @

EXAMPLE 1 A pyramid 3 m high has a square base that is 3 m on a side. The cross-
section of the pyramid perpendicular to the altitude x m down from the vertex is a square
x m on a side. Find the volume of the pyramid.

<2
y Al = croo) sechitn =

( :e,umcj 2

Typical cross-section

T

N\
S ! v
g\ —~

FIGURE 6.5 The cross-sections of the
pyramid in Example 1 are squares.

EXAMPLE 2 A curved wedge is cut from a circular cylinder of radius 3 by two planes.
One plane is perpendicular to the axis of the cylinder. The second plane crosses the first
plane at a 457 angle at the center of the cylinder. Find the volume of the wedge.
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Solids of Revolution: The Disk Method
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Volume by Disks for Rotation About the x-axis

b b
s o 2
—[A(x)d.\' lﬂ[R(x)] dx.
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EXAMPLE 4  The region between the curve y = V7,0 = x = 4, and the x-axis is
revolved about the x-axis to generate a solid. Find its volume.
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EXAMPLE 6  Find the volume of the solid generated by revolving the region bounded
1.

v
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Volume by Disks for Rotation About the y-axis

d d
V=/ .4(\!)1(\'=/ W[R(.\')]:dy.

EXAMPLE 7  Find the volume of the solid generated by revolving the region between
the y-axis and the curve x = 2/y, | = y = 4, about the y-axis.
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FIGURE 6.11 The region (a) and part of
the solid of revolution (b) in Example 7.
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Solids of Revolution: The Washer Method
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FIGURE 6.13 The cross-sections of the solid of revolution generated here arém\b&l\ggs@?isks so the integral ALY,

fahA(.\') dx leads to a slightly different formula.

Outer radius: ~ R(x) The washer’s area is ) )g_c{:cﬂ/

Inner radius:  r{x) { 2 A
b _— A =Aeaof iy =TRW) -7
\/: //—wdx L= R[K&)L—fwj
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Volume by Washers for Rotation About the x-axis

b b
V= / A(x)dx = / 7([Rx)F — [H0)]) dx.
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EXAMPLE 9  The region bounded by the curve y = x> + 1 and the line y = —x + 3
is revolved about the x-axis to generate a solid. Find the volume of the solid.

Vol R€n
acound X~ aX),

integration ) ) /
\I\k\) Aﬂf YY\Q,UA(A Washer cross-section

Outer radius: R(x) = -x+ 3
Inner radius: r(x) = x2 + 1

Al) =6ca of trg
_ TRt

VS RRT A
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EXAMPLE 10  The region bounded by the parabola y = x? and the line y = 2x in the
first quadrant is revolved about the y-axis to generate a solid. Find the volume of the

solid. (c\/dllle— J\L.ﬁ’l’jll}f\
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6 2 | Volumes Using Cylindrical Shells
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Slicing with Cylinders
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EXAMPLE 1  The region enclosed by the x-axis and the parabola y = f(x) = 3x — x?
is revolved about the vertical line x = —1 to generate a solid (Figure 6.16). Find the volume
of the solid.
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FIGURE 6.17 A cylindrical shell of
height y; obtained by rotating a vertical
strip of thickness Ax; about the line

x = —1.The outer radius of the cylinder
occurs at x;, where the height of the
parabola is y; = 3x; — x;° (Example 1).
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AV = circumference % h?ight # thickness
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axXe Outer circumference = 2 - radius = 27r(1 + x;)
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Taking the limit as the thickness Ax; — 0 and n — ©© gives the volume integral
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b
V_ ,,ETME AV, =l 27r(shell radius)(shell height) dx.
r

The Shell Method
\

shell Eormula for Revolution About a Vertical Line

The volume of the solid generated by revolving the region between the x-axis and
the graph of a continuous function y = f(x) = 0,L = a = x = b, about a ver-

tical linex = Lis
b/ shell ) ( she]l / A W
V= I N
_[ 2 (radius helght X

EXAMPLE 2  The region bounded by the curve y = \/x, the x-axis, and the line x = 4
is revolved about the y-axis to generate a solid. Find the volume of the solid.

revolve the o

’ OrouQy Shell radius
y ) y
T . Sh7radius /ﬂ\ / !

Interval of
integration
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Interval of integration
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EXAMPLE 3 The region bounded by the cuer_\' = \: the x-axis, and the line x = 4

is revolved about the x-axis to generate a solid. Find the volume of the solid by the shell
method.
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Summary of the Shell Method
Regardless of the position of the axis of revolution (horizontal or vertical), the

steps for implementing the shell method are these;‘ - A;%‘f
1. Draw the region and sketch a line segment across it parallel to the axis of rev-

Wl VI IV

olution. Label the segment’s height or length (shell height) and distance from
the axis of revolution (shell radius). fﬁ

\/::. 2N
2. Find the limits of integration for the thickness variable.

3. Integrate the product 27 (shell radius) (shell hcigh}) with respect to the thick-
ness variable (x or y) to fi e volume.
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