23:3

5.4

The Fundamental Theorem of Calculus

Evaluate the integrals

23.
$$\int_{1}^{\sqrt{2}} \frac{s^2 + \sqrt{s}}{s^2} ds$$

25.
$$\int_{\pi/2}^{\pi} \frac{\sin 2x}{2 \sin x} dx$$

27.
$$\int_{-4}^{4} |x| \ dx$$

29.
$$\int_0^{\ln 2} e^{3x} dx$$

$$31. \int_0^{1/2} \frac{4}{\sqrt{1-x^2}} \, dx$$

33.
$$\int_{2}^{4} x^{\pi-1} dx$$

24.
$$\int_1^8 \frac{(x^{1/3}+1)(2-x^{2/3})}{x^{1/3}} dx$$

$$26. \int_0^{\pi/3} (\cos x + \sec x)^2 \, dx$$

28.
$$\int_0^{\pi} \frac{1}{2} (\cos x + |\cos x|) dx$$

30.
$$\int_{1}^{2} \left(\frac{1}{x} - e^{-x}\right) dx$$

$$32. \int_0^{1/\sqrt{3}} \frac{dx}{1+4x^2}$$

34.
$$\int_{-1}^{0} \pi^{x-1} dx$$

Differentiating Integrals

In Exercises 121–128, find dy/dx.

121.
$$y = \int_2^x \sqrt{2 + \cos^3 t} \, dt$$

123.
$$y = \int_{x}^{1} \frac{6}{3+t^4} dt$$

$$125. \ y = \int_{\ln x^2}^0 e^{\cos t} \, dt$$

127.
$$y = \int_0^{\sin^{-1}x} \frac{dt}{\sqrt{1 - 2t^2}}$$

122.
$$y = \int_{2}^{7x^2} \sqrt{2 + \cos^3 t} \, dt$$

124.
$$y = \int_{\sec x}^{2} \frac{1}{t^2 + 1} dt$$

126.
$$y = \int_{1}^{e^{\sqrt{x}}} \ln(t^2 + 1) dt$$

128.
$$y = \int_{\tan^{-1}x}^{\pi/4} e^{\sqrt{t}} dt$$

$$E \times : \int F(x) = {}^{\chi} \int f(t) dt$$
 and $\int f(t) = {}^{\chi} \int \frac{1 + u^4}{v} dv$ then $\int f''(2)$.

(a) Let
$$f(x)$$
 and $g(x)$ be differentiable everywhere, $f(0) = f'(0)$ and $g(x) = (1-x) \int_{x}^{x^3} g(t)dt + f(x)$. Find $g'(0)$.

Week 10 Page 2

(b) Let f(x) be differentiable everywhere. Write in the most simplified form of the followings.

i.
$$\frac{d}{dx} \int_0^{2^x} f(t)dt$$

ii.
$$\frac{d}{dt} \int_{2^x}^0 f(t)dt$$

iii.
$$\int_0^{2^x} \frac{d}{dx} f(t) dt$$

iv.
$$\int_{2x}^{0} \frac{d}{dt} f(t) dt$$

$$\lim_{n\to\infty}\frac{\int_{Sin}(nt^3)dt}{x^5}$$

5.5

Indefinite Integrals and the Substitution Method

$$\int \tan^7 \frac{x}{2} \sec^2 \frac{x}{2} \, dx$$

$$\int \frac{1}{\theta^2} \sin \frac{1}{\theta} \cos \frac{1}{\theta} d\theta$$

$$\int \sqrt{\frac{x^3 - 3}{x^{11}}} \, dx$$

$$\int x(x-1)^{10}\,dx$$

$$\int (\sin 2\theta) \, e^{\sin^2 \theta} \, d\theta$$

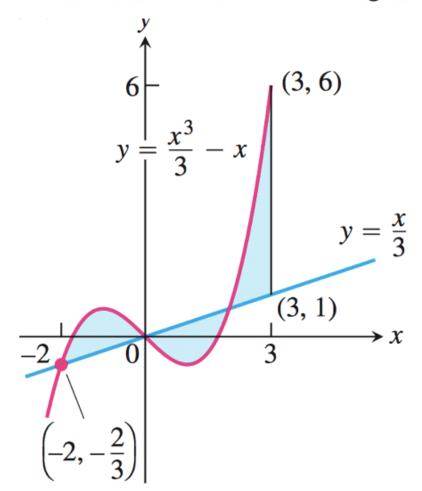
$$\int \frac{Jn}{(1+\sqrt{n})^4}$$

5.6 | Substitution and Area Between Curves

$$\int_{\sqrt{2}}^{2} \frac{\sec^{2}(\sec^{-1} x) \, dx}{x\sqrt{x^{2} - 1}}$$

Area

Find the total areas of the shaded regions



Find the areas of the regions enclosed by the curves in Exercises 81–84.

81.
$$4x^2 + y = 4$$
 and $x^4 - y = 1$

82.
$$x^3 - y = 0$$
 and $3x^2 - y = 4$

83.
$$x + 4y^2 = 4$$
 and $x + y^4 = 1$, for $x \ge 0$

84.
$$x + y^2 = 3$$
 and $4x + y^2 = 0$

Find the area of the "triangular" region in the first quadrant bounded on the left by the y-axis and on the right by the curves $y = \sin x$ and $y = \cos x$.

Find the area of the "triangular" region in the first quadrant that is bounded above by the curve $y = e^{x/2}$, below by the curve $y = e^{-x/2}$, and on the right by the line $x = 2 \ln 2$.

Find the area of the region in the first quadrant bounded on the left by the y-axis, below by the curve $x = 2\sqrt{y}$, above left by the curve $x = (y - 1)^2$, and above right by the line x = 3 - y.

