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5 4 | The Fundamental Theorem of Calculus
. |

Mean Value Theorem for Definite Integrals

THEOREM 3—The Mean Value Theorem for Definite Integrals If f is continu-
ous on [a, b), then at some point ¢ in [a, b],
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THEOREM 4—The Fundamental Theorem of Calculus, Part 1 If f is continuous
on[a, b], then F(x) = f: f(#) dt is continuous on [a, b] and differentiable on (a, b)
and its derivative is f(x):
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THEOREM 4 (Continued)—The Fundamental Theorem of Calculus, Part 2 If f is
continuous at every point in [a, b] and F is any antiderivative of f on [a, b], then
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Area

Summary:

To find the area between the graph of y = f(x) and the x-axis over the interval
[a, b):

1. Subdivide [a, b] at the zeros of f.

2. Integrate f over each subinterval.

3. Add the absolute values of the integrals.

5}-‘ Find the areas of the shaded regions
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Ex: find the total area between the region and the x-axis.
=

y=—x2—2x -3=x=2

5 5 | Indefinite Integrals and the Substitution Method

THEOREM 6—The Substitution Rule If u = g(x) is a differentiable function
whose range is an interval /, and f is continuous on /, then

/f(g(X))g’(X)dx = /f(u) du.

Ex fxsin(zx?)dx, u = 2x2
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The Integrals of sin? x and cos? x
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5 6 | Substitution and Area Between Curves
. I

THEOREM 7—Substitution in Definite Integrals  If g’ is continuous on the
interval [a, b] and f is continuous on the range of g(x) = u, then
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Definite Integrals of Symmetric Functions

THEOREM 8 Let f be continuous on the symmetric interval [—a, a].

(a) If fis even, then /af(x)dx = Z/Hf(x)dx.
-a 0

(b) lfjisodd.then/af(x)dx =0.
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Areas Between Curves

DEFINITION  If f and g are continuous with f(x) = g(x) throughout [a, b],
then the area of the region between the curves y = f(x) and y = g(x) from a
to b is the integral of (/' — g) from a to b:

b
4= / [f(x) — g(x)] dx.
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Ex: Xy=—x2+3x

Integration with Respect to y
y
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Ex: Find the areas of the regions enclosed by the curves
=

® y2—4x=4 and 4 —-y=16
e« x=y>—yp* and x=2
* y=V|x| and Sy=x+6

¢ y=8cosx and y

sec’x, —mw/3<x=<mw/3
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